
Master of Science
Business Information Systems

Semantic and Logical Foundations for
Business Vocabulary and Rules
http://www.omg.org/spec/SBVR/1.0

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 2

SBVR: Conceptual Schema

■ For any given business, the “universe of discourse” indicates those
aspects of the business that are of interest.

■ A “model,” in the sense used here, is a structure intended to describe a
business domain, and is composed of
♦ a conceptual schema (fact structure) and
♦ a population of ground facts

■ The conceptual schema declares the terms, fact types and rules relevant
to the business domain.

■ A fact is a proposition taken to be true by the business.
♦ Instantiation of a fact type
♦ Instantiated roles of fact types refer to individuals (such as “Employee

123”, "John Smith" or “the sales department”).
♦ Individuals are considered as being of a particular type (such as

“Employee” or “Department”) where type denotes “set of possible
individuals.”

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 3

The Conceptual Schema as a Semantic Net
■ Two types of concepts:

♦ general concept (class)
♦ individual concept (instance)

■ From this distinction we have at least three kinds of
relations (binary fact types)
♦ structural relations:

●Relation between individual and general concepts
(also called instance-of)
sales department specializes organisation unit
John Smith specializes employee

●Relation between general concepts (also called is-
a or SubClass-Of)
employee specializes person

Unfortunately, SBVR uses the same name for both kinds of
structural relations

♦ non-structural relations
● arbitrary relations, e.g.

John Smith works-for sales department

John Smith

Individual
Concept

General
Concepts

employee

real object

person

specializes

specializes

sales department

works-for

organisation unit

specializes

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 4

Fact Population

■ Rules are applied to facts about the domain (i.e. data about customers,
empoyees, etc.)

■ The fact model includes both
♦ the conceptual schema and
♦ the ground fact population

(set of fact instances that instantiate the fact types in the schema)

■ In contrast to the conceptual schema, the (domain-specific) fact population
is typically highly variable.

■ In treating a fact model as a set of facts that
typically changes over time, we allow facts
to be added or deleted

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 5

Conceptual Schema in Predicate Logic

■ Concepts:
♦ The general concepts correspond to unary predicates
♦ The individual concepts correspond to constants

■ Structural Relations
♦ Instance-of is an atomic formula with the general concept as Predicate

and the individual concept as term
Employee(john_smith) John Smith specializes employee

♦ Subclass relationship corresponds to an implication
x Employee(x) Person(x) employee specializes person

♦ Binary fact types correspond to binary predicates
Works_for(john_smith, sales_department)

John Smith works-for sales department

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 6

Facts

■ Facts are either elementary or existential.
♦ Elementary fact: declaration that an individual has a property

● Example: Country(australia) Large(australia)
"The Country named ‘Australia’ is large "

♦ Existential fact: assert the existence of an individual
● Example: x Country(x) Country_code(x, us)

"There is a Country that has the Country Code ‘US’ "

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 7

Static Constraints

■ Constraints are used to define bounds, borders, or limits on
fact populations, and may be static or dynamic.

■ A static constraint imposes a restriction on what fact
populations are possible or permitted, for each fact
population taken individually.

■ Example:

♦x y Employee(x) Date(y) born_on(x,y)
♦ Each Employee has a date of birth

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 8

Reality model vs. in-practice model

■ A reality model of a business domain is intended to reflect the
constraints that actually apply to the business domain in the
real world.

■ An in-practice model of a business domain reflects the
constraints that the business chooses in practice to impose on
its knowledge of the business domain.

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 9

Derivation Rules / Inference Rules

■ Derivation rules indicate how the population of a fact type may be derived
from the populations of one or more fact types or how a type of an
individual may be defined in terms of other types of individuals and fact
types.

■ Example 1:

♦ Person1 is an uncle of Person2 if Person1 is a brother of some
Person3 who is a parent of Person2,

x,y,z Brother(x,y) Parent(y,z) Uncle(x,z)
■ Example 2:

♦ Each person is a employee if the person works for a company

x,y Person(x) Company(y) Works_for(x,y) Employee(x)

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 10

Constraints and Changing Fact Populations
Static Constraints and Derivation Rules are applied at a single state

♦ If the fact model changes there is a new state,
for which the constraints and derivation rules
are applied again without regard of previous states.

♦ Example:
Assume that customers get a discount if their shopping
exceeds 1'000 Fr. within 12 months. The calculation of
the discount changes as soon as a shopping is made such that 1'000 Fr. are reached
and may be reduced again if the customer does not buy enough within 12 months.

A dynamic constraint imposes a restriction on transitions between
states of fact populations.
♦ Dynamic constraints compare one state

to another state.

♦ Example:
A person’s marital status may change from single to
married, but not from divorced to single

(The semantics of dynamic constraints is not defined in SBVR 1.0)

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 11

Modalities
♦ Structural and operational rules
♦ Rule enforcement

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 12

Modalities

■ In SBVR every constraint has an associated modality

■ Alethic modality – Structural Rules

■ Deontic modality – Operative Rules

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 13

Modalities and Predicate Logic

■ Rules usually have just one modal operator.

■ Obligations and necessity modal operators are usually at the
front of the rules
♦ it is obligatory that (deontic modality)
♦ it is necessary that (alethic modality)

■ These rules can easily be represented in predicate
♦ The rule (without modality operator) is represented in predicate

logic
♦ The rule is "tagged" with the modality of the main operator

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 14

Represent the following rule in predicate logic

It is necessary that a person that rents a car has a driver license

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 15

Interpretation of Alethic Modality

■ If no modality is explicitly specified, an alethic modality of
necessity is often assumed:

C1 Each Person was born in at most one Country

■ may be explicitly verbalized with an alethic modality
C1' It is necessary that each Person was born in at most one

Country

■ For the model theory, we omit the necessity operator from the
formula. The version without modal operator can be
represented in standard predicate logic
x y z ((Person(x) Country(y) Country(z)

Born_in(x,y) Born_in(x,z)) y = z)

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 16

Representation (Im-)Possibility Statements:
Transformation Rules for Alethic Modalities

Other transformation rules:

To be represented in predicate logic, possibility statements can be transformed into
necessity statements (and vice versa) using the following transformation rules:

and

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 17

Represention Prohibition and Permission Rules:
Transformation Rules for Deontic Modalities

To be represented in predicate logic, prohibition statements can be transformed into
obligatory statements (and vice versa) using the following transformation rules:

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 18

Modalities and Rule Enforcement

■ Simply tagging rules with the modality might not be enough
because modalities are important for rule enforcement.

■ The tagging of a rule as a necessity or obligation impacts the
rule enforcement policy.
♦ Necessity rules (alethic modality) do not need enforcement –

what is derived is valid.
♦ Enforcement of an obligation rule (deontic modality) should

allow states that do not satisfy the obligation rule

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 19

Deontic Modality in Predicate Logic
■ To distinguish rules that need enforcement, we can represent the deontic

modality operator explicitly as a special predicate

■ To do this, we transform rules with deontic operators into a form using the
„forbidden“ modality

It is obligatory that each person that drives a car is older than 18 years.
or It is forbidden that a Person that drives a car is younger than 18 years

■ Deontic Modality can be represented in Predicate Logic:
1. Normalize the formula by moving the modal operator to the front
2. Replace the modal operators by a special predicate (e.g. forbidden).

■ Example: It is forbidden that a car driver is less than 18 years

can be represented as

x y (Car_driver(x) Age(x,y) y < 18 forbidden
■ In the Structured Englisch verbalization, forbidden is a modal operator while in

the logic representation forbidden is a predicate. This predicates is treated like
any other predicate, except that it has a reserved name.

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 20

Open and Closed World
♦ Negation
♦ Incomplete Information

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 21

Open/Closed World Semantics

Dealing with missing Information

■ The closed world assumption (CWA) is the presumption
that what is not currently known to be true is false.
♦ Under the CWA, if a proposition cannot be proved true, it is

false.

■ The open world assumption (OWA) states that lack of
knowledge does not imply falsity.
♦ Under the OWA, if a proposition cannot be proved true and its

negation cannot be proved true, the truth of the proposition is
unknown

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 22

Database Example for Open/Closed World

■ Users typically adopt the closed world assumption when interpreting data in
databases.
♦ If a data is not in the database, it is assume to be false

■ Example: Select employee number of each employee who does not drive a car
select empNr from Employee where empNr not in (select empNr from Drives).

■ Correctness of the result depends on whether all employees with their car registry
are in the database.

Suppose we have the following sample database with the employee number
and name of each employee, as well as the cars they drive (if any):

Does it
include all
employees?

Does it
include all
drivers?

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 23

Open and Closed World in a Business Domain
The distinction between open and closed world assumption can be made on the level
of the fact model, based on different criteria:
■ Incomplete information – Closed world: There are business domains where we

expect all information to be present
♦ Example: A payment not stored in our accounting system means that the

invoice has not been paid.
♦ In this case, missing information means falsity

■ Incomplete information – Open world: In a given business domain we might be
unable to collect all information.
♦ Example: If we do not find the phone number of a customer in a CRM system,

it does not mean, that he does not have a phone number
♦ In this case, missing information does not imply falsity.

■ Domain of interest: Attention can be restricted to propositions of interest in a
specific domain. If a proposition is not relevant to that domain, it is not included.
♦ Example: We can decide not to store information about customers’ marital

status in a CRM system..
♦ In this case we do not assume missing information as false; rather we

simply dismiss it from consideration.

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 24

Open/Closed World and Negation

■ The open or closed world semantics is important for negation
♦ Closed World (CWA): a failure to find a fact implies its negation
 negation as failure

♦ Open World (OWA): lack of knowledge does not imply falsity. A
proposition is false only if its negation can be proved.
 full negation

■ Example:
♦ If the customer did not pay his goods he is reminded.

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 25

Open or closed world?

■ A business might have complete knowledge about some parts and
incomplete knowledge about other parts

■ Thus, in practice a mixture of open and close world assumption may
applied

■ To cope with this situation, one might, for example,
♦ assume open world semantic by default and
♦ apply local closure to specific parts
(or vice versa)

■ Local closure means that for some parts of the overall DB schema the
closed world assumption applies.

■ Local closure can be asserted explicitly for individual and fact types, e.g.
♦ employee is closed (all employees are known)
♦ has-name is closed (all names of employees are known).

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 26

Additional Quantifiers

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 27

Quantifiers in SBVR
In addition to and SBVR supports numeric quantifiers:

Prof. Dr. Knut Hinkelmann
MSc BIS Enterprise Architecture - SBVR Semantics 28

Definition of Additional Quantifiers

■ The additional existential quantifiers can easily be defined in
terms of the standard quantifiers

■ Example:

y 2x Parent(x,y)

is equivalent to

y x1 x2 (Parent(x1,y) Parent(x2,y) x1 ≠ x2
x (Parent(x,y) (x = x1 x = x2)))

