
Master of Science
Business Information Systems

UML - Modelling Data

Knut Hinkelmann

Prof. Dr. Knut Hinkelmann
MSc BIS 2

References

■ OMG Unified Modelling Language - UML, Current Standard
Version 2.1.2 http://www.omg.org/spec/UML/2.1.2/

■ R. Miller: Practical UML: A Hands-On Introduction for
Developers. http://edn.embarcadero.com/article/31863

■ Donald Bell: UML basics: The class diagram.
http://www.ibm.com/developerworks/rational/library/content/
RationalEdge/sep04/bell/

Prof. Dr. Knut Hinkelmann
MSc BIS 3

Unified Modeling Language UML
■ Unified Modeling Language (UML) is a set of standardized modeling languages in

the field of software engineering.
■ UML includes a set of graphic notation techniques (diagrams) to create visual

models of software-intensive systems, including their structure and design
■ In UML, you can model

♦ any type of application,
♦ running on any type and combination of hardware, operating system,

programming language, and network
■ The UML standard is developed and managed by the Object Management Group

OMG and forms a foundation of OMG's Model Driven Architecture (MDA)
♦ a UML model can be either platform-independent or platform-specific,

■ Using XMI (XML Metadata Interchange, another OMG standard), it is possible to
transfer a UML model
♦ from one tool into a repository, or
♦ into another tool for refinement or the next step in your chosen development

process.

Source: Introduction to OMG's Unified Modeling Language™ (UML®),
http://www.omg.org/gettingstarted/what_is_uml.htm

Prof. Dr. Knut Hinkelmann
MSc BIS 4

Types of UML Diagrams

Structure diagrams

Data
1. Class diagram
2. Object diagram

IT systems
3. Component diagram
4. Deployment diagram
5. Composite structure diagram (*)
6. Package diagram

Behavior diagrams
7. Use-case diagram
8. State machine diagram
9. Activity diagram

Interaction diagrams
10. Sequence diagram
11. Communication diagram
12. Interaction overview diagram (*)
13. Timing diagram (*)

(*) not existing in UML 1.x, added in UML 2.0

UML contains diagrams for modelling structure (data and IT)
and behavior of software systems

Prof. Dr. Knut Hinkelmann
MSc BIS 5

Object Orientation

■ In the first versions, UML was described as addressing the
needs of modeling systems in an object-oriented manner

■ Object orientation still is the inspiration for some key concepts

■ Main concepts:
♦ Object – individual unit capable of receiving/sending messages,

processing data
♦ Class – pattern giving an abstraction for a set of objects
♦ Inheritance – technique for reusability and extendibility

Prof. Dr. Knut Hinkelmann
MSc BIS 6

Class Diagrams

■ A Class diagram gives an overview of a system by showing
its classes and the relationships among them.

■ Class diagrams are static -- they display what interacts but not
what happens when they do interact.

■ Main concepts involved
♦ Class - Object
♦ Inheritance
♦ (various kinds of) Associations

Prof. Dr. Knut Hinkelmann
MSc BIS 7

Class Diagram Example
The class diagram below models a customer order from a retail catalog. The central class is the
Order. Associated with it are the Customer making the purchase and the Payment. A Payment is
one of three kinds: Cash, Check, or Credit. The order contains OrderDetails (line items), each
with its associated Item.

Prof. Dr. Knut Hinkelmann
MSc BIS 8

UML Class

■ Gives the type of a set of objects existing at run-time

■ Declares a collection of methods and attributes that describe
the structure and behavior of its objects

■ Basic notation:
Class name

Attributes

Operations (methods)

Prof. Dr. Knut Hinkelmann
MSc BIS 9

Class Information ■ UML class notation is a rectangle divided
into three parts: class name, attributes,
and operations.

■ Names of abstract classes, such as
Payment, are in italics.

■ Relationships between classes are the
connecting links.

■ Attributes and operations can be labeled
according to access and scope.

■ The illustration uses the following UML™
conventions.
♦ Static members are underlined. Instance

members are not.
♦ The operations follow this form:

<access specifier> <name>
(<parameter list>) : <return type>

♦ The parameter list shows each parameter
type preceded by a colon.

♦ Access specifiers appear in front of each
member.

Symbol Access

+ public: they are visible to all

– private: not visible to callers outside the class

protected: only visible to children of the class

Access specifiers:

Prof. Dr. Knut Hinkelmann
MSc BIS 10

Class Diagram Elements
■ Association -- a relationship between instances of the two classes. In a diagram,

an association is a link connecting two classes.
■ Aggregation -- an association in which one class belongs to a collection. An

aggregation has a diamond end pointing to the part containing the whole.
♦ Order has a collection of OrderDetails.

■ Generalization -- an inheritance link indicating one class is a superclass of the
other. A generalization has a triangle pointing to the superclass.
♦ Payment is a superclass of Cash, Check, and Credit.

■ An end of an assiciation may have a role name to clarify the nature of the
association.
♦ OrderDetail is a line item of each Order

■ A navigability arrow on an association shows which direction the association can
be traversed or queried. The arrow also indicates who "owns" the association's
implementation
♦ OrderDetail has an Item..
♦ An OrderDetail can be queried about its Item, but not the other way around

Associations with no navigability arrows are bi-directional

Prof. Dr. Knut Hinkelmann
MSc BIS 11

Class Diagram Elements (cont.)

■ The multiplicity of an association end is the number of possible instances
of the class associated with a single instance of the other end.
Multiplicities are single numbers or ranges of numbers.
♦ In our example, there can be only one Customer for each Order, but a

Customer can have any number of Orders.

■ This table gives the most common multiplicities.

Multiplicities Meaning

0..1 zero or one instance. The notation n . . m indicates n to m instances.

0..* or * no limit on the number of instances (including none).

1 exactly one instance

1..* at least one instance

Prof. Dr. Knut Hinkelmann
MSc BIS 12

Composition and Aggregation

■ Composition is a strong association in which the part can belong to only
one whole -- the part cannot exist without the whole.
♦ Composition is denoted by a filled diamond at the whole end.

■ Aggregation is a kind of "light” composition (semantics open, to be
accommodated to user needs)
♦ Aggregation is denoted by a empty diamond at the whole end.

BoxOffice belongs to exactly
one MovieTheater. Destroy
the MovieTheater and the
BoxOffice goes away!

The collection of Movies
is not so closely bound to
the MovieTheater.

Prof. Dr. Knut Hinkelmann
MSc BIS 13

Dependencies and Constraints

■ A dependency is a relation between two classes in which a change in one may
force changes in the other. Dependencies are drawn as dotted lines.

■ A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { }.

Section can be part of a
CourseSchedule only if it
is not canceled.

Co_op depends on
Company. If you decide to
modify Company, you may
have to change Co_op too.

Prof. Dr. Knut Hinkelmann
MSc BIS 14

Other Elements of Class Diagrams

There are other elements of class diagrams

■ Association Classes

■ Interfaces

■ Stereotypes

■ Templates

■ Comments

Prof. Dr. Knut Hinkelmann
MSc BIS 15

UML Object

■ Instance of a class

■ Can be shown in a class and object diagram

■ Notation

Prof. Dr. Knut Hinkelmann
MSc BIS 16

Object Diagram
■ Object diagrams show instances instead of classes. They are useful for

explaining small pieces with complicated relationships, especially recursive
relationships.

■ Each rectangle in the object diagram corresponds to a single instance.
■ Instance names are underlined in UML diagrams.
■ Class or instance names may be omitted from object diagrams as long as the

diagram meaning is still clear.

class diagram showing that a
university Department can
contain lots of other
Departments.

object diagram instantiating
the class diagram, replacing
it by a concrete example.

Prof. Dr. Knut Hinkelmann
MSc BIS 17

Exercise

■ Do the types of association
(association, composition and
aggregation) in die diagramms
make sense?
Give reasons for your decisions.

customer retailer

page

container

car

content

tirechild

father

book

Prof. Dr. Knut Hinkelmann
MSc BIS 18

Exercise: Bank account

■ Identify classes, attributes and operations according to the following
description and draw a classs diagram.

■ For the sample data draw an object diagram
♦ Consider a bank and their customers. A customer can open any

number of accounts. For each customer the name, address and
date of birth.

♦ A customer can close any of his/her accounts.
♦ All accounts have a common interest rate.
♦ Every account has a unique account number
♦ A customer can deposit and withdraw an arbitrary amount.
♦ To calculate the interest, for each account movement the date

and the amount has to be noted.

Prof. Dr. Knut Hinkelmann
MSc BIS 19

Solution

account

accountNo
interestRate
/balance

openAccount()
deposit()
withdraw()
addInterest()
closeAccount()

accountMovement

amount
date
type

customer

name
address
dateOfBirth

1..* 1..* 1 1..*

Prof. Dr. Knut Hinkelmann
MSc BIS 20

Exercise

■ Draw an object diagram for a customer John Smith (born
11/23/1978, living in Basel) who has an account with number
0815 who deposited 2000.- Fr. on 12/04/2008 and withdrew
500.- Fr. on 12/09/2008

0815:account

accountNo=0815
interestRate
/balance=1500

deposit1:accountMovement

amount=2000 Fr
date=12/04/2008
type=deposit

johnSmith:customer

name=John Smith
address=Basel
dateOfBirth=11/23/1978

withdraw1:accountMovement

amount=500 Fr
date=12/00/2008
type=withdrawal

