

# **Meta-Modeling**

#### Prof. Dr. Knut Hinkelmann







- A meta-model defines the languages from which to form a model.
- A meta-model is a model hat defines the language for expressing a model.
- A meta-model specifies the *abstract syntax* of a modeling language. It can be understood as the representation of the class of all models expressed in that language
- A model conforms to a language whose abstract syntax is represented by a metamodel.



### The OMG Model Stack



Prof. Dr. Knut Hinkelmann MSc Business Information Systems



- A modelling "language" specifies the building blocks (elements) from which a model can be made.
- There can be different types of modelling languages, depending on the kind of model
  - graphical model
  - textual description
  - mathematical model
  - conceptual model
  - physical model



#### Meta-model



A meta-model defines the modelling language, i.e. the building blocks that can be used to make a model. It defines the

- object types that can be used to represent a model
- relations between object types
- attributes of the object types
- meaning of the object types
- rules to combine object types and relations
- The meta-model is the abstract syntax, the modeling language is the concrete syntax.

# $\mathbf{n}|w$

## Abstract vs. Concrete Syntax

#### **Abstract Syntax**

- Deep structure of a language.
- What are the significant parts of the expression?
- Example: a sum expression has its two operand expressions as its significant parts



#### **Concrete Syntax**

- Surface level of a language.
- What does the expression look like?

Example: the same sum expression can look in different ways:

| 2 + 3                        | infix   |
|------------------------------|---------|
| (+ 2 3)                      | prefix  |
| (2 3 +)                      | postfix |
| bipush 2<br>bipush 3<br>iadd | JVM     |
| the sum of 2 and 3           | English |

http://www.cse.chalmers.se/edu/year/2011/course/TIN321/lectures/proglang-02.html

### Model and Meta-Model in Architecture



# $\mathbf{n}|w$

#### Illustration: Meta-model and Model for Processes

#### **Meta-model:**

A process model consists of object types for

- «activity» and «subprocess»,
- «events», «gateways»
- «data object»
- «sequence flow» and «data association».

The elements have attributes and there are rules how the elements can be combined.

#### Modeling Language:

Syntax (appearance) and semantics of meta-model elements



#### Model:



A model contains instances of the object types defined in the metamodel, according to the concrete syntax of the modeling language. The object "confirm order" represents a real entity; it is an instance of the object type "activity"

Prof. Dr. Knut Hinkelmann MSc Business Information Systems



### Meta Model Hierarchy

The meta-model must again be described in some language, which has to be specified in a meta-model



Often the meta-model and the modeling language are unified and not distinguished.

Prof. Dr. Knut Hinkelmann MSc Business Information Systems

## MOF – Meta Object Facility

- The Meta Object Facility (MOF) is an OMG meta-modeling standard.
- MOF is itself a *meta-meta-model*, a specification describing how one may build meta-models.
- MOF is closely based on Unified Modeling Language (UML):
  - Meta-models are represented with class diagrams of UML
- MOF defines the theoretical underpinnings of the XML Metadata Interchange (XMI)
  - ♦ XMI is a standard syntax for the Exchange of Models

 $\mathbf{n}|w$ 

## Modeling a Meta-Model

- OMG uses UML Class
  Diagrams for Meta-Modeling
- Example: Business
  Motivation Meta-Model

