
Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Modeling Data and Documents

Knut Hinkelmann

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

An Example Process
■ This is a simplified version of the process for serving guests

■ There are three data objects. Can you see a difference between these
data objects?

Business Architecture 2

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Modelling Data

■ Data objects in BPMN can represent different kinds of data
♦ structured data
♦ documents

■ Documents themselves either represent
♦ a document class represents a generic documents for which a

specific instance exists for each process instance
● Example: The bill

♦ a specific document
● Example: The menu which the guests get to choose their meals
● Hint: For a specific document we can specify a file name or a URL

■ Another example: An application form is a specific document
while an application would be represented as a class

Business Architecture 3

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Modelling Structured Data

■ Structured data can be represented for example as
♦ Entity Relationship Diagram
♦ UML Class Diagram/Object Diagrams

■ Data models represent
♦ entities/classes
♦ columns/attributes
♦ relations/associations

Business Architecture 4

ERD:

UML Class Diagram:

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

UML - MODELING DATA

Business Architecture 5

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 6

References

■ OMG Unified Modelling Language - UML, Current Standard
Version 2.1.2 http://www.omg.org/spec/UML/2.1.2/

■ Donald Bell: UML basics: The class diagram.
http://www.ibm.com/developerworks/rational/library/content/
RationalEdge/sep04/bell/

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 7

Unified Modeling Language UML
■ Unified Modeling Language (UML) is a set of standardized modeling languages in

the field of software engineering.
■ UML includes a set of graphic notation techniques (diagrams) to create visual

models of software-intensive systems, including their structure and design
■ In UML, you can model

♦ any type of application,
♦ running on any type and combination of hardware, operating system,

programming language, and network
■ The UML standard is developed and managed by the Object Management Group

OMG and forms a foundation of OMG's Model Driven Architecture (MDA)
♦ a UML model can be either platform-independent or platform-specific,

■ Using XMI (XML Metadata Interchange, another OMG standard), it is possible to
transfer a UML model
♦ from one tool into a repository, or
♦ into another tool for refinement or the next step in your chosen development

process.

Source: Introduction to OMG's Unified Modeling Language™ (UML®),
http://www.omg.org/gettingstarted/what_is_uml.htm

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 8

Types of UML Diagrams

Structure diagrams

Data
1. Class diagram
2. Object diagram

IT systems
3. Component diagram
4. Deployment diagram
5. Composite structure diagram (*)
6. Package diagram

Behavior diagrams
7. Use-case diagram
8. State machine diagram
9. Activity diagram

Interaction diagrams
10. Sequence diagram
11. Communication diagram
12. Interaction overview diagram (*)
13. Timing diagram (*)

(*) not existing in UML 1.x, added in UML 2.0

UML contains diagrams for modelling structure (data and IT)
and behavior of software systems

UML Class Diagrams

Data
1. Class diagram
2. Object diagram

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 9

Class Diagrams / Object Diagrams

■ UML Class Diagrams are inspired by Object orientation
(Object-oriented programming)

■ Main concepts:
♦ Class – abstraction for a set of objects with common data and

operations
♦ Object – individual unit as instance of a class
♦ Associations – Relationship between (objects of) classes
♦ Inheritance – technique for reusability and extendibility

■ A Class diagram gives an overview of a system by showing
its classes and the relationships among them

■ An Object diagram additionally shows objects
UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 10

UML Class

■ Gives the type of a set of objects

■ Declares a collection of attributes and operations (methods)
that describe the structure and behavior of its objects

■ Basic notation: Class name

Attributes

Operations (methods)

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 11

UML Class and Object

■ An Object is a specific instance of a class

■ It has a state which is characterized by concrete values for
the attributes defined for the class

UML Class Diagrams

Class: Two Objects for the class "Flight":

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 12

Class Diagram Example
The class diagram below models a customer order from a retail catalog. The central class is the
Order. Associated with it are the Customer making the purchase and the Payment. A Payment is
one of three kinds: Cash, Check, or Credit. The order contains OrderDetails (line items), each
with its associated Item.

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 13

Class Information ■ UML class notation is a rectangle divided
into three parts: class name, attributes,
and operations.

■ Attributes and operations can be labeled
according to access and scope.

■ The illustration uses the following UML™
conventions.
♦ Static members are underlined. Instance

members are not.
♦ The operations follow this form:

<access specifier> <name>
(<parameter list>) : <return type>

♦ The parameter list shows each parameter
type preceded by a colon.

♦ Access specifiers appear in front of each
member.

Symbol Access

+ public: they are visible to all

– private: not visible to callers outside the class

protected: only visible to children of the class

Access specifiers:

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 14

Associations
■ Association -- a relationship between instances of the two classes. In a diagram,

an association is a link connecting two classes.
■ There are two special kinds of associations:

♦ Generalization -- an inheritance link indicating one class is a superclass of
the other. A generalization has a triangle pointing to the superclass.
● Payment is a superclass of Cash, Check, and Credit.

♦ Aggregation -- an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole.
● Order has a collection of OrderDetails.

■ An end of an assiciation may have a role name to clarify the nature of the
association.
♦ OrderDetail is a line item of each Order

■ A navigability arrow on an association shows which direction the association can
be traversed or queried. The arrow also indicates who "owns" the association's
implementation
♦ OrderDetail has an Item..
♦ An OrderDetail can be queried about its Item, but not the other way around

Associations with no navigability arrows are bi-directional

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Generalization - Inheritance
■ Inheritance is a very important concept in object-oriented design
■ Inheritance refers to the ability of one class (child class) to inherit the

identical functionality of another class (super class), and then add new
functionality of its own.

■ Inheritance is modeled with the Generalization line from the child class to
the super class.

15

In this example, the classes
CheckingAccount and
SavingsAccount inherit from the
BankAccount.
In addition to the attributes and
operations explicitly mentioned, the
classes CheckingAccount and
SavingsAccount also have the
attributes owner and balance as
well as the operations deposit()
and withdrawal().

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Associations

■ Associations define relationships between objects

■ There are five kinds of associations:
♦ Standard associations which can be

● bi-directional
● uni-directional

♦ Association classes define valuable information for associations

■ Associations are always assumed to be bi-directional unless
you qualify the association as some other type

16UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Bi-directional Associations

■ For bi-directional associations - indicated by a solid line between
two classes - both classes are aware of each other and their
relationship

■ At either end of the line, you place a role name and a multiplicity
value.

■ This example shows that a Flight is associated with a specific Plane
and a Flight. The Plane takes on the role of "assignedPlane" and
the Flight the rule of "assignedFlights"

17UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Uni-directional Association

■ In a uni-directional association, two classes are related, but
only one class "knows" that the relationship exists.

■ A uni-directional association is drawn as a solid line with an
open arrowhead pointing to the known class. Uni-directional
association includes a role name and a multiplicity value, but
only for the known class.

18UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Associations vs. Attributes

■ Attributes and Associations differ by the type of their value
♦ Attributes have literals as values (number, string, date, …)
♦ Associations have objects as their values

■ Example:
♦ The flight number of a

Flight is an Integer
♦ The plane assigned to a

flight is an instance of class Plane

■ Furthermore, an attribute has exactly one value, an
association can have multiple values (or: there can be
multiple associations)

UML Class Diagrams 19

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 20

Multiplicity

■ The multiplicity of an association end is the number of possible instances
of the class associated with a single instance of the other end.

■ Multiplicities are single numbers or ranges of numbers.

■ This table gives the most common multiplicities.

Multiplicities Meaning

0..1 zero or one instance.

0..* or * no limit on the number of instances (including none).

1 exactly one instance

1..* at least one instance

n..m n to m instances (n and m stand for numbers, e.g. 0..4, 3..15)

n exactly n instance (where n stands for a number, e.g. 3)

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Multiplicity - Example

■ The multiplicity value next to the Plane class of 0..1 means
that when an instance of a Flight exists, it can either have one
instance of a Plane associated with it or no Planes associated
with it (i.e., maybe a plane has not yet been assigned).

■ The Plane instance can be associated either with no flights or
with up to an infinite number of flights.

21UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Association Classes

■ Association class are tied to a primary association. It includes
valuable information about the relationship.

■ An association class is represented like a normal class, but it
is linked to an association line with a dotted line.

22

In this example, when an instance
of a Flight class is associated with
an instance of a FrequentFlyer
class, there will also be an
instance of a MileageCredit class

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Aggregation and Compostion

■ Aggregation is a special type of association used to model a
"whole to its parts" relationship.
♦ In basic aggregation relationships, the lifecycle of a part class

is independent from the whole class's lifecycle.
● Aggregation is denoted by a empty diamond at the whole end

♦ For a composition, the child class's instance lifecycle is
dependent on the parent class's instance lifecycle.
● Composition is denoted by a filled diamond at the whole end

23UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Examples of Aggregation

■ Aggregation
♦ The Wheel class's instance

lives independently of the Car
class's instance.

♦ The wheel can be created
before being placed on a car
during assembly.

♦ If the Car instance is
destroyed the Wheels
instance can exist further.

■ Composition
♦ Company class instance will

always have at least one
Department class instance.

♦ A department cannot exist
before a company exists.

♦ When the Company instance
is removed, the Department
instance is automatically
removed as well.

24UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 25

Dependencies and Constraints

■ A dependency is a relation between two classes in which a change in one may
force changes in the other. Dependencies are drawn as dotted lines.

■ A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { }.

Section can be part of a
CourseSchedule only if it
is not canceled.

Co_op depends on
Company. If you decide to
modify Company, you may
have to change Co_op too.

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 26

Instances - UML Objects

■ Sometimes it is useful to show example instances of the classes

■ The notation of an instance consists of two parts
♦ The top compartment having an underlined concatenation of Instance

Name and Class Name separated by a colon
♦ The lower compartment having some of the attribute names and their

values

UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Instances

■ Example: Object diagram with class instances and their
associations.

27UML Class Diagrams

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

MODELING DOCUMENTS

Business Architecture 28

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Document Models

■ Documents can be grouped into document classes (also
called document types) according to their usage:
♦ Examples: invoice, application, menu, report

■ There can be specialisations of document classes.
♦ Example: There can be special kinds of reports like project

report, expert opinions, or reviews.

■ Metadata are attribute values which describe documents.
♦ Example: a report might have an creator, a creation date and a

subject.

■ There are standards for metadata like the Dublin Core
Metadata Initiative (http://dublincore.org)

Business Architecture 29

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 30Information Retrieval and Knowledge Organisation - 5 Metadata

Structured Meta-data – Examples

■ Each document consists of the
♦ usage data (document itself, content)
♦ meta-data

■ Kinds of meta-data
♦ General metadata

● can be used for any kind of information
● Examples: author, date of creation,

subject

♦ Application-specific metadata
● Examples:

– For a letter: sender and recipient
– For a report: project name

name: ELENA-Ber
creation: 18.3.2001
modification: 25.6.2001
format: Word

document type: project report
recipient: All Life Insurance Inc.
author: Smith

meta-data

user data (document)

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 31

Information as product

Michael C. Daconta: Information as Product, 2007

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems 32

user
(producer/ consumer)

Meta-data

manuals
laws/

regulations
product

data
price
lists

corres-
pondence

$ §resources
(information
products)

description
(catalog)

metadata
(Index)

services store search

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Document model
■ Although some tools like ADONIS have a

model type for documents, there is no
standard for modeling documents

■ However, we can use UML class diagrams
and object diagrams to model documents 1)

♦ A document class is represented as a class object with
attributes describing the meta-data

♦ A specific document is an object (i.e. an instance of a class)

Business Architecture 33

specific documents
as UML objects:

document classes as a
UML class diagramm:

ADONIS document model:

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

Modeling Documents in Agilian

■ In the Agilian Enterprise tool we can use stereotypes to
specialize UML class diagrams for modeling documents.

■ We can define a new stereotype "Document" and
♦ change color
♦ add an icon

Business Architecture 34

Prof. Dr. Knut Hinkelmann
MSc Business Information Systems

A Data Model in Agilian

■ A Data Model can combine
♦ Document classes
♦ Objects
♦ Structured Data
♦ Associations

Business Architecture 35

