

swissuniversities

Enterprise Architecture Frameworks

Learning Objective of Chapter 2

- Topic: Enterprise Architecture Framework
 - Content and structure of enterprise architecture descriptions
- This is necessary because
 - Enterprises are complex systems and thus also enterprise architecture descriptions are complex
 - Frameworks provide a structure for EA descriptions
- Learning Objective
 - Understand the content of an enterprise architecture description and how it can be organised
 - know the two main enterprise architecture frameworks TOGAF and Zachman

$\mathbf{n} \boldsymbol{\mathcal{U}}$

ISO/IEC/IEEE 42010 Systems and Software Engineering — Architecture Description

- International standard for architecture descriptions of systems and software.
- The original IEEE 1471 specified requirements on the contents of architecture descriptions of systems.
 - An architecture description (AD) expresses the architecture of a system of interest
- ISO/IEC/IEEE 42010 adds definitions and requirements on architecture frameworks and architecture description languages (ADLs)

http://www.iso-architecture.org/ieee-1471/faq.html

$\mathbf{n}|\boldsymbol{w}|$

Archtecture Description and Architecture Models

- An Architecture Description consists of one or several Architecture Models
- A Model is a reproduction of a *relevant* part of reality which contains the essential aspects to be investigated.
- Relevance depends on stakeholders and their concerns.

Stakeholder and Concerns

- Stakeholders are individuals, groups or organizations holding concerns for the System, i.e.
 - Examples of Stakeholders: client, owner, user, operator, maintainer, developers, suppliers, regulator, auditor, architect.
- A Concern is any interest in the system, i.e. the objective for which a model is used
 - Examples of Concerns: optimisation, efficiency, quality of service, automation, agility, behavior, business goals, customer experience, flexibility, maintainability, regulatory compliance, security.

ISO/IEC/IEEE 42010

Architecture Views and Viewpoints

- Not everyone is interested in everything.
- Views and Viewpoints are a means to specify which part of an Architecture Description is of relevance
 - *View*: Part of an architecture description, which is relevant for
 - one or more Stakeholders
 - to address specific *Concerns*
 - Viewpoint specifies a view
 - a characterisation of stakeholders and their concerns
 - the concepts, relationships, models, and visualizations that are provided by the view

A *view* is what you see and a *viewpoint* is where you are looking from

Source: ArchiMate 2.0 Specification, chapter 8, http://pubs.opengroup.org/architecture/archimate2-doc/chap08.html

Architecture Models and Model Kinds

- An Architecture View consists of one or more Architecture Models
 - Examples of Models:
 - The model of the order process of the company,
 - the organisation structure of a specific company
 - the model of the customer data,
- A Model Kind defines the concepts and relations needed to model Architecture Views governing Architecture Viewpoint.
 - Examples of Model Kinds:
 - process models
 - organisation models
 - data models

http://www.iso-architecture.org/ieee-1471/cm/

Architecture Framework

An Architecture Framework establishes a common practice for creating, interpreting, analyzing and using architecture descriptions (Views and Viewpoints) within a particular domain of application or stakeholder community.

Timeline of Enterprise Architecture Frameworks

Enterprise Architecture Frameworks

- There are a number of Enterprise Architecture Frameworks
- We can distinguish two main types of structures:
 - *Matrix* of aspects and perspectives, e.g.
 - Zachmann Enterprise Architecture Framework
 - An enterprise ontology

- Three layer architecture with business, applications and technology, e.g.
 - TOGAF The Open Group Architecture Framework
 - A methodology for architecture development
 - ArchiMate A modeling language for EA
 - Best Practice Enterprise Architecture

The Zachman Framework

Zachman Framework

- Regarded the origin of enterprise architecture frameworks (originally called "Framework for Information Systems Architecture")
- First version published in 1987 by John Zachman
- It is still further developed by Zachman International (http://www.zachman.com)
- Often referenced as a standard approach for expressing the basic elements of enterprise architecture
- The framework is a logical structure for classifying and organising the descriptive representations of an enterprise

Zachman, J.A., 1987. A framework for information systems architecture. IBM Systems Journal, 26(3).

Rationale of the Zachman Architecture

- There is not a single descriptive representation for a complex object ... there is a SET of descriptive representations.
- Descriptive representations (of anything) typically include:
 - Perspectives
 - Abstractions

Abstractions

$\mathsf{n}|w$

Dimension 1 – Perspectives

- Zachman originally used the analogy of classical architecture
- For the different stakeholders different aspects of a building are relevant models of the building from different perspectives
 - Bubble charts: conceptual representation delivered by the architect
 - Architect's drawing: transcription of the owner's perceptual requirements owner's perspective
 - Architect's plans: translation of the owner's requirements into a product designer's perspective
 - **Contractor's plans:** phases of operation, architect's plans contrained by nature and technology *builder's perspective*
 - **Shop plans:** parts/sections/components of building details (out-of-context specification) *subcontractor's perspective*
 - The building: physical building itself

(Zachman 1987)

Dimension 1: Architectural Representations with analogies in Building and Information Systems

Generic	Buildings	Information Systems
Ballpark	Bubble charts	Scope/objectives
Owner's representation	Architect's drawings	Model of the business (or business description)
Designer's representation	Architect's plans	Model of the information system (or information system description)
Builder's representation	Contractor's plans	Technology model (or technology- constrained description)
Out-of-context representation	Shop plans	Detailed description
Machine language representation		Machine language description (or object code)
Product	Building	Information system

(Zachman 1987)

Perspectives

- Each row is different in nature, in content, in semantics from the others representing different perspectives
- Representations do not correspond to different levels of details level of detail is an independent variable, varying within one representation

Dimension 2: Aspects of an Architecture

- There exist different types of descriptions oriented to different aspects
- Zachman associates each aspect with a question word
 - WHAT inventory models
 - HOW functional/process models
 - WHERE location/distribution models
 - WHO organisation models
 - WHEN timing models
 - WHY motivation models

Abstractions for Manufacturing

(Zachman 2012)

Each cell

contains

models

The Zachman Framework for Enterprise Architecture – Enterprise Ontology

Abstractions/Aspects

© 1987-2011 John A. Zachman, all rights reserved. Zachman® and Zachman International® are registered trademarks of John A. Zachman

$\mathbf{n}|\boldsymbol{w}|$

Strategic Alignment Model and Zachman Framework

Model Types in Zachmann

- There are different model kinds for each viewpoint (one model kind per cell)
- There can be different modeling languages to represent a kind of model
- The Architecture Description language consists of the different model kinds used

Relations between Models and Model Elements

@ 1987-2011 John A. Zachman, all rights reserved. Zachman@ and Zachman International@ are registered trademarks of John A. Zachman

There are relations between (elements of) the models

Horizontal Relations: In same perspective, e.g.

- Data used in a process
- Application implementing a process activitiy

Vertical relations: Between different perspectives

- Implementation of an application
- Database model for an entity relationship model

Enterprise Architecture Modeling – Examples of Models Kinds

TOGAF – The Open Group Architecture Framework

$\mathbf{n}|\boldsymbol{w}|$

TOGAF – The Open Group Architecture Framework

- Developed and continuously evolved since the mid-90's by The Open Group's Architecture Forum
- While Zachman is more an ontology, TOGAF is a methodology
- At the heart of the framework is the Architecture Development Method (ADM)
- http://www.opengroup.org/togaf/

Structure of the TOGAF Document

TOGAF Architecture Views

The TOGAF enterprise architecture model is organised in four partial sub-architectures:

Business Architecture

- Strategies, governance, organisation and business processes of the enterprise
- Information Systems Architecture consists of

Data Architecture

 data and their releations as well as principles for the organisation and the management of resources

Application Architecture

- information systems and their relations to business processes

Technology Architecture

• currenct technical realisation and future enterprise-specific standards like operating system, middleware, infrastructure

Technology Architecture

$\mathbf{n}|\boldsymbol{w}|$

TOGAF Architecture Development Method (ADM)

- TOGAF addresses the whole enterprise architecture lifecycle
- The TOGAF Architecture Development Method (ADM) is a generic method for developing an enterprise architecture
- The goals, approaches, required input, activities and deliverables are documented for each phase separately
- The ADM method is enriched by specific ADM guidelines and techniques.
 - (The Open Group 2009)

TOGAF Architecture Views

$\mathbf{n}|\boldsymbol{w}|$

TOGAF Architecture Development Method (ADM)

 Although originally represented as a sequential method, chapter 19.2 of TOGAF describes also iteration cycles

(The Open Group 2011)

TOGAG Content Metamodel

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap33.html

(The Open Group 2011)

TOGAF Content Metamodel

- The content metamodel provides a definition of all the types of building blocks that may exist within an architecture.
- The content metamodel
 - identifies all of these building block (i.e., application, data entity, technology, actor, and business service),
 - shows the relationships that are possible between them, e.g.
 - actors consume business services
 - data entities are held within applications
 - technologies implement applications
 - applications support buiness users or actors
 - identifies artifacts that can be used to represent them.

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap33.html

(The Open Group 2011, Part IV)

TOGAF: Architecture Content

The architecture content framework "provides a structural model for architectural content" and may also be substituted with other frameworks, such as the Zachman Framework (The Open Group, 2009, p. 361).

(The Open Group 2011, Part IV)

TOGAF: Architecture Content Framework

- The content framework is intended to allow TOGAF to be used as a stand-alone framework for architecture.
- However, some enterprises may opt to use an external framework (such as the Zachman Framework or ArchiMate) in conjunction with TOGAF.
- In these cases, the content framework provides a useful reference and starting point for TOGAF content to be mapped to other frameworks

ArchiMate

ArchiMate

ArchiMate is a modeling language that supports the TOGAF content metamodel and the TOGAF ADM

- Three main types of elements:
 - Active structure element: an entity that is capable of performing behavior.
 - **Behavior** element: a unit of activity performed by one or more active structure elements.
 - **Passive structure** element: an object on which behavior is performed.

$\mathbf{n}|\boldsymbol{w}|$

ArchiMate and TOGAF

Cross-Layer Dependencies: Business-IT Alignment

Source: ArchiMate 2.0 Specification, http://pubs.opengroup.org/architecture/archimate2-doc/chap06.html

Extensions of ArchiMate to cover the whole TOGAF ADM

Best Practice Enterprise Architecture

Best Practice Enterprise Architecture

- The Bast Practice Architecture from Inge Hanschke (2010) is another example of a threelayer enterprise architecture framework.
- In contrast to TOGAF
 - it is quite simple
 - it differentiates between the technical architecture and the infrastructure architecture
 - it does not have a separate data or information architecture

from (Hanschke, 2010)

Partial Architectures of the Best Practice Architecture

Business Architecture

 Describing main entities that determine the business: business processes, functions, products, business units and business objects.

Application Architecture

- documentation of the information systems landscape, i.e. information systems, their data und interfaces und the information flow
- bridge between business architecture and the architectures of technology and infrastructure

Technology Architecture

 determination of enterprise-specific technical standards for information systems, interfaces and infrastructure

Infrastructure Architecture

• Entities of the infrastructure, on which the information systems are running

Enterprise Architecture Modeling

Prof. Dr. Knut Hinkelmann

Enterprise Architecture Frameworks