
MSc Business Information Systems

UML – Unified Modelling Language

Sources:

OMG Unified Modelling Language - UML, Current Standard Version 2.1.2
http://www.omg.org/spec/UML/2.1.2/

R. Miller: Practical UML: A Hands-On Introduction for Developers.
http://dn.codegear.com/article/31863

Prof. Dr. Knut Hinkelmann 2MSc BIS/

The Significance of UML
UML helps you specify, visualize, and document models of software systems,
including their structure and design

In UML, you can model
any type of application,
running on any type and combination of hardware, operating system,
programming language, and network

UML forms a foundation of OMG's Model Driven Architecture (MDA)
a UML model can be either platform-independent or platform-specific,

Standardized by the OMG: Definition driven by consensus rather than innovation

Using XMI (XML Metadata Interchange, another OMG standard), you can transfer
your UML model

from one tool into a repository, or
into another tool for refinement or the next step in your chosen development
process.

Source: Introduction to OMG's Unified Modeling Language™ (UML®),
http://www.omg.org/gettingstarted/what_is_uml.htm

Prof. Dr. Knut Hinkelmann 3MSc BIS/

Class Diagramm

We already used UML class diagrams informally to describe
BMM and SBVR

Example: Class Diagramm

Prof. Dr. Knut Hinkelmann 4MSc BIS/

Types of UML Diagrams
Structure diagrams
1. Class diagram
2. Composite structure diagram (*)
3. Component diagram
4. Deployment diagram
5. Object diagram
6. Package diagram

Behavior diagrams
7. Use-case diagram
8. State machine diagram
9. Activity diagram

Interaction diagrams
10. Sequence diagram
11. Communication diagram
12. Interaction overview diagram (*)
13. Timing diagram (*)

(*) not existing in UML 1.x, added in UML 2.0

Prof. Dr. Knut Hinkelmann 5MSc BIS/

Overview of this Section

A closer look at …
Use case diagram
Class diagram

A short look at …
Object diagram
Deployment diagram
State machine diagram
Activity diagram

and the
OCL Object Constraint Language

Prof. Dr. Knut Hinkelmann 6MSc BIS/

Use Case Diagrams
Use case diagrams describe what a system does from the standpoint of an external
observer. The emphasis is on what a system does rather than how.

Main concepts:
System: the system under modeling
Actor: external “user” of the system: who or what initiates

the events involved in that task. Actors are simply
roles that people or objects play.

Use case: execution scenario, observable by an actor:
Communication: The connection between actor and use case is a

communication association (or communication for short).

Use Case diagrams are widely used in real-life projects, e.g. for
Exposing requirements
Communicate with clients
Planning the project

Additional textual notes are often used/required

Prof. Dr. Knut Hinkelmann 7MSc BIS/

Use Case Diagram Example

clinic

A system boundary rectangle separates the clinic system from the external actors.

Prof. Dr. Knut Hinkelmann 8MSc BIS/

Use Case Diagram extended

Prof. Dr. Knut Hinkelmann 9MSc BIS/

Use Case Example - Explanations

A use case generalization shows that one use case is simply a special kind of
another.

Pay Bill is a parent use case and Bill Insurance is the child.

A child can be substituted for its parent whenever necessary. Generalization
appears as a line with a triangular arrow head toward the parent use case.

Include relationships factor use cases into additional ones. Includes are
especially helpful when the same use case can be factored out of two different
use cases.

Make Appointment and Request Medication include Check Patient
Record as a subtask.

In the diagram, include notation is a dotted line beginning at base use case ending
with an arrows pointing to the include use case. The dotted line is labeled
<<include>>.

An extend relationship indicates that one use case is a variation of another.
Extend notation is a dotted line, labeled <<extend>>, and with an arrow toward the
base case. The extension point, which determines when the extended case is
appropriate, is written inside the base case.

Prof. Dr. Knut Hinkelmann 10MSc BIS/

Class Diagrams

A Class diagram gives an overview of a system by showing
its classes and the relationships among them.

Class diagrams are static -- they display what interacts but
not what happens when they do interact.

Main concepts involved
Class - Object
Inheritance
(various kinds of) Associations

Prof. Dr. Knut Hinkelmann 11MSc BIS/

Class Diagram Example

Prof. Dr. Knut Hinkelmann 12MSc BIS/

Object Orientation

In the first versions, UML was described as addressing the
needs of modeling systems in a OO manner

Object orientation still is the inspiration for some key
concepts

Main concepts:
Object – individual unit capable of receiving/sending
messages, processing data
Class – pattern giving an abstraction for a set of objects
Inheritance – technique for reusability and extendibility

Prof. Dr. Knut Hinkelmann 13MSc BIS/

UML Class

Gives the type of a set of objects existing at run-time

Declares a collection of methods and attributes that describe
the structure and behavior of its objects

Basic notation:
Class name

Attributes

Operations (methods)

Prof. Dr. Knut Hinkelmann 14MSc BIS/

Class Information
The class notation is a 3-piece rectangle
with the class name, attributes, and
operations.

Attributes and operations can be labeled
according to access and scope.

The illustration uses the following UML™
conventions.

Static members are underlined.
Instance members are not.
The operations follow this form:
<access specifier> <name>
(<parameter list>) : <return type>
The parameter list shows each
parameter type preceded by a
colon.
Access specifiers appear in front of
each member.protected: only visible to children of the class #

private: not visible to callers outside the class–

public: they are visible to all +

Access Symbol

Access specifiers:

Prof. Dr. Knut Hinkelmann 15MSc BIS/

Class Diagram Elements
Association -- a relationship between instances of the two classes. In a diagram,
an association is a link connecting two classes.

Aggregation -- an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole.

Order has a collection of OrderDetails.

Generalization -- an inheritance link indicating one class is a superclass of the
other. A generalization has a triangle pointing to the superclass.

Payment is a superclass of Cash, Check, and Credit.
An end of an assiciation may have a role name to clarify the nature of the
association.

OrderDetail is a line item of each Order
A navigability arrow on an association shows which direction the association can
be traversed or queried. The arrow also indicates who "owns" the association's
implementation

OrderDetail has an Item..
An OrderDetail can be queried about its Item, but not the other way around

Associations with no navigability arrows are bi-directional

Prof. Dr. Knut Hinkelmann 16MSc BIS/

Class Diagram Elements (cont.)

The multiplicity of an association end is the number of possible
instances of the class associated with a single instance of the other end.
Multiplicities are single numbers or ranges of numbers.

In our example, there can be only one Customer for each
Order, but a Customer can have any number of Orders.

This table gives the most common multiplicities.

at least one instance1..*

exactly one instance1

no limit on the number of instances (including none).0..* or *

zero or one instance. The notation n . . m indicates n to m instances. 0..1

MeaningMultiplicities

Prof. Dr. Knut Hinkelmann 17MSc BIS/

Composition and Aggregation
Composition is a strong association in which the part can belong to only
one whole -- the part cannot exist without the whole.

Composition is denoted by a filled diamond at the whole end.
Aggregation is a kind of "light” composition (semantics open, to be
accommodated to user needs)

Aggregation is denoted by a empty diamond at the whole end.

BoxOffice belongs to exactly
one MovieTheater. Destroy
the MovieTheater and the
BoxOffice goes away!

The collection of Movies
is not so closely bound
to the MovieTheater.

Prof. Dr. Knut Hinkelmann 18MSc BIS/

Dependencies and Constraints

A dependency is a relation between two classes in which a change in one may
force changes in the other. Dependencies are drawn as dotted lines.

A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { }.

Section can be part of a
CourseSchedule only if
it is not canceled.

Co_op depends on
Company. If you decide to
modify Company, you may
have to change Co_op too.

Prof. Dr. Knut Hinkelmann 19MSc BIS/

Other Elements of Class Diagrams

There are other elements of class diagrams

Association Classes

Interfaces

Stereotypes

Templates

Comments

Prof. Dr. Knut Hinkelmann 20MSc BIS/

UML Object

Instance of a class

Can be shown in a class and object diagram

Notation

Prof. Dr. Knut Hinkelmann 21MSc BIS/

Object Diagram
Object diagrams show instances instead of classes. They are useful for
explaining small pieces with complicated relationships, especially recursive
relationships.

Each rectangle in the object diagram corresponds to a single instance.

Instance names are underlined in UML diagrams.

Class or instance names may be omitted from object diagrams as long as the
diagram meaning is still clear.

class diagram showing that
a university Department
can contain lots of other
Departments.

object diagram instantiating
the class diagram, replacing
it by a concrete example.

Prof. Dr. Knut Hinkelmann 22MSc BIS/

Composite Structure Diagram

Prof. Dr. Knut Hinkelmann 23MSc BIS/

Deployment Diagrams
Deployment diagrams show the physical configurations of software and hardware.

Nodes represent either physical hardware (keyward «device») or software
(<<executionEnvironment>>)
Nodes are connected by communication relations
A component is a code module. Components are shown as rectangles with two tabs
at the upper left. Each component belongs on a node.

«device»
Bank Server

«device»
Real Estate Server

Prof. Dr. Knut Hinkelmann 24MSc BIS/

Sequence Diagram
A sequence diagram is an interaction diagram that details how operations are carried out --
what messages are sent and when.

Sequence diagrams are organized according to time. The time progresses as you go
down the page.
The objects involved in the operation are listed from left to right according to when
they take part in the message sequence.

Prof. Dr. Knut Hinkelmann 25MSc BIS/

Collaboration Diagram
Collaboration diagrams are also interaction
diagrams. They convey the same information as
sequence diagrams, but they focus on object roles
instead of the times that messages are sent.

In a sequence diagram, object roles are the
vertices and messages are the connecting links.

Each message in a collaboration diagram has a
sequence number. The top-level message is
numbered 1. Messages at the same level (sent
during the same call) have the same decimal prefix
but suffixes of 1, 2, etc. according to when they
occur

Prof. Dr. Knut Hinkelmann 26MSc BIS/

Activity Diagram

An activity diagram is essentially a fancy flowchart. Activity diagrams can
be divided into object swimlanes that determine which object is
responsible for which activity.

A single transition comes out of each activity, connecting it to the next
activity.

A transition may branch into two or more mutually exclusive transitions.
Guard expressions (inside []) label the transitions coming out of a
branch.

A branch and its subsequent merge marking the end of the branch
appear in the diagram as hollow diamonds.

A transition may fork into two or more parallel activities. The fork and the
subsequent join of the threads coming out of the fork appear in the
diagram as solid bars.

Prof. Dr. Knut Hinkelmann 27MSc BIS/

State Chart Diagram
A statechart diagram shows the possible states of the object and the transitions
that cause a change in state.

States are rounded rectangles.
Transitions are arrows from one state to another.
Events or conditions that trigger transitions are written beside the arrows.

Prof. Dr. Knut Hinkelmann 28MSc BIS/

Activity Diagram - Example

Prof. Dr. Knut Hinkelmann 29MSc BIS/

OCL – Object Constraint Language
OCL is a constraint language integrated in the UML standard

OCL aims to fill the gap between mathematical rigor and business modeling
formal language with precise semantics for expression but
easy to read and write

It is recommended in UML for:
Constraints: pre and post conditions, invariants
Boolean expressions: guards, query body specification
Defining initial and derived values of features

and
to specify queries on the UML model, which are completely programming
language independent.

OCL is a pure specification/modeling language; therefore, an OCL expression is
guaranteed to be without side effects – it simply returns a value

OCL is not a programming language; therefore, it is not possible to write program
logic or flow control in OCL. You cannot invoke processes or activate non-query
operations within OCL.

Prof. Dr. Knut Hinkelmann 30MSc BIS/

Where to use OCL

OCL can be used for a number of different purposes:
As a query language
To specify invariants on classes and types in the class model
To specify type invariant for Stereotypes
To describe pre- and post conditions on Operations and
Methods
To describe Guards
To specify target (sets) for messages and actions
To specify constraints on operations
To specify derivation rules for attributes for any expression
over a UML model.

Prof. Dr. Knut Hinkelmann 31MSc BIS/

Example Diagram

Prof. Dr. Knut Hinkelmann 32MSc BIS/

Relation to the UML Metamodel

Context
Each OCL expression is written in the context of an instance of a
specific type.
In an OCL expression, the reserved word self is used to refer to the
contextual instance
The context of an OCL expression within a UML model can be
specified through a so-called context declaration at the beginning of
an OCL expression

Invariant
The OCL expression can be part of an Invariant, a condition that
must be true for all instances at any time
context Company inv:
self.numberOfEmployees > 50

Prof. Dr. Knut Hinkelmann 33MSc BIS/

Relation to the UML Metamodel

Preconditions and Postconditions
The stereotype of constraint is shown by putting the labels
‘pre:’ and ‘post:’ before the actual Preconditions and
Postconditions. For example:
The OCL expression can be part of an Invariant, a condition
that must be true for all instances at any time
context Typename::operationName(param1 : Type1, ...): ReturnType

pre : param1 > ...
post: result = ...

In an example diagram, we can write:
context Person::income(d : Date) : Integer
post: result = 5000

