
Modelling Data and IT-Systems

Knut Hinkelmann

2Prof. Dr. Knut Hinkelmann
MSc BIS

References

■ OMG Unified Modelling Language - UML, Current Standard
Version 2.1.2 http://www.omg.org/spec/UML/2.1.2/

■ R. Miller: Practical UML: A Hands-On Introduction for
Developers. http://edn.embarcadero.com/article/31863

3Prof. Dr. Knut Hinkelmann
MSc BIS

Process
Model

Workflow
Model

Process
Map

Entities
Relations
Ontology

Logical
Data Model

Entities

Organi
gram

User Model

Business
Units

Application
Architecture

Applica-
tions

Production
Rule

Model

Business
Rule

Model

Product
Model

Business
Model

Business
Goals
Model

Plattform
Specific

WF-Model

Physical
Data Model

System
Design

Business

Systems

Strategy

Perspectives Data/
Knowledge Process Application Products Motivation

People/
Organisation

Technology

Aspects

Production
Rule

Design

Relations between Models and Model Elements

4Prof. Dr. Knut Hinkelmann
MSc BIS

Modeling Information Systems and Technology

■ IT models represent
♦ IT systems
♦ hardware
♦ network components
♦ IT services
♦ …
and their connections

5Prof. Dr. Knut Hinkelmann
MSc BIS

Example of proprietary IT models: ARIS Express

■ A System landscape is composed
of hierarchies of domains and IT
systems

■ An IT infrastructure model
represents hardware, IT systems
and network components

Domain

IT‐System IT‐System IT‐System

IT‐System IT‐System IT‐System

IT‐System IT‐System IT‐System

Domäne

Domäne Domäne

IT‐System IT‐System

ARIS Express contains models for IT Systems Landscape
and IT Infrastructure

Network component

Hardware

IT‐System

IT‐System

IT‐System

Netzwerk

Netzwerk

Netzwerk

NetzwerkNetzwerk

Hardware

IT‐System IT‐System

6Prof. Dr. Knut Hinkelmann
MSc BIS

Data Modeling

■ Data models define data elements, their structures and relationships
between them

■ Data models exist on 3 levels
♦ (strategic): list of things that are important in the domain/business
♦ conceptual:

● entity classes, representing kinds of things of significance in the
domain

● relationships between entity classes
● attributes of entities classes

♦ logical: structure of the data (tables, columns, XML tags etc.)
♦ physical: physical means by which data are stored

■ There are several standards for modelling data
♦ Entity Relationship models – for relational databases
♦ Class diagrams – for object-oriented representations

7Prof. Dr. Knut Hinkelmann
MSc BIS

Unified Modeling Language UML

■ Unified Modeling Language (UML) is a set of standardized modeling languages in
the field of software engineering.

■ UML includes a set of graphic notation techniques (diagrams) to create visual
models of software-intensive systems, including their structure and design

■ In UML, you can model
♦ any type of application,
♦ running on any type and combination of hardware, operating system,

programming language, and network
■ The UML standard is developed and managed by the Object Management Group

OMG and forms a foundation of OMG's Model Driven Architecture (MDA)
♦ a UML model can be either platform-independent or platform-specific,

■ Using XMI (XML Metadata Interchange, another OMG standard), it is possible to
transfer a UML model
♦ from one tool into a repository, or
♦ into another tool for refinement or the next step in your chosen development

process.

Source: Introduction to OMG's Unified Modeling Language™ (UML®),
http://www.omg.org/gettingstarted/what_is_uml.htm

8Prof. Dr. Knut Hinkelmann
MSc BIS

Types of UML Diagrams

Structure diagrams

Data
1. Class diagram
2. Object diagram

IT systems
3. Component diagram
4. Deployment diagram
5. Composite structure diagram (*)
6. Package diagram

Behavior diagrams
7. Use-case diagram
8. State machine diagram
9. Activity diagram

Interaction diagrams
10. Sequence diagram
11. Communication diagram
12. Interaction overview diagram (*)
13. Timing diagram (*)

(*) not existing in UML 1.x, added in UML 2.0

UML contains diagrams for modelling structure (data and IT)
and behavior of software systems

9Prof. Dr. Knut Hinkelmann
MSc BIS

Overview of this Section

■ A closer look at …
♦ Class diagrams
♦ Object diagrams

■ A shorter look at …
♦ Use case diagrams
♦ Composite Structure diagrams
♦ Deployment diagram
♦ State machine diagram
♦ Activity diagram
and the
♦ OCL Object Constraint Language

10Prof. Dr. Knut Hinkelmann
MSc BIS

Object Orientation

■ In the first versions, UML was described as addressing the
needs of modeling systems in an object-oriented manner

■ Object orientation still is the inspiration for some key concepts

■ Main concepts:
♦ Object – individual unit capable of receiving/sending messages,

processing data
♦ Class – pattern giving an abstraction for a set of objects
♦ Inheritance – technique for reusability and extendibility

11Prof. Dr. Knut Hinkelmann
MSc BIS

Class Diagrams

■ A Class diagram gives an overview of a system by showing
its classes and the relationships among them.

■ Class diagrams are static -- they display what interacts but not
what happens when they do interact.

■ Main concepts involved
♦ Class - Object
♦ Inheritance
♦ (various kinds of) Associations

12Prof. Dr. Knut Hinkelmann
MSc BIS

Class Diagramm

■ We already used UML class diagrams informally to describe
BMM and SBVR

■ Example:

13Prof. Dr. Knut Hinkelmann
MSc BIS

Class Diagram Example

14Prof. Dr. Knut Hinkelmann
MSc BIS

UML Class

■ Gives the type of a set of objects existing at run-time

■ Declares a collection of methods and attributes that describe
the structure and behavior of its objects

■ Basic notation:
Class name

Attributes

Operations (methods)

15Prof. Dr. Knut Hinkelmann
MSc BIS

Class Information
■ The class notation is a 3-piece rectangle

with the class name, attributes, and
operations.

■ Attributes and operations can be labeled
according to access and scope.

■ The illustration uses the following UML™
conventions.
♦ Static members are underlined. Instance

members are not.
♦ The operations follow this form:

<access specifier> <name>
(<parameter list>) : <return type>

♦ The parameter list shows each parameter
type preceded by a colon.

♦ Access specifiers appear in front of each
member.

protected: only visible to children of the class #

private: not visible to callers outside the class–

public: they are visible to all +

Access Symbol

Access specifiers:

16Prof. Dr. Knut Hinkelmann
MSc BIS

Class Diagram Elements
■ Association -- a relationship between instances of the two classes. In a diagram,

an association is a link connecting two classes.
■ Aggregation -- an association in which one class belongs to a collection. An

aggregation has a diamond end pointing to the part containing the whole.
♦ Order has a collection of OrderDetails.

■ Generalization -- an inheritance link indicating one class is a superclass of the
other. A generalization has a triangle pointing to the superclass.
♦ Payment is a superclass of Cash, Check, and Credit.

■ An end of an assiciation may have a role name to clarify the nature of the
association.
♦ OrderDetail is a line item of each Order

■ A navigability arrow on an association shows which direction the association can
be traversed or queried. The arrow also indicates who "owns" the association's
implementation
♦ OrderDetail has an Item..
♦ An OrderDetail can be queried about its Item, but not the other way around

Associations with no navigability arrows are bi-directional

17Prof. Dr. Knut Hinkelmann
MSc BIS

Class Diagram Elements (cont.)

■ The multiplicity of an association end is the number of possible instances
of the class associated with a single instance of the other end.
Multiplicities are single numbers or ranges of numbers.
♦ In our example, there can be only one Customer for each Order, but a

Customer can have any number of Orders.

■ This table gives the most common multiplicities.

at least one instance1..*

exactly one instance1

no limit on the number of instances (including none).0..* or *

zero or one instance. The notation n . . m indicates n to m instances. 0..1

MeaningMultiplicities

18Prof. Dr. Knut Hinkelmann
MSc BIS

Composition and Aggregation

■ Composition is a strong association in which the part can belong to only
one whole -- the part cannot exist without the whole.
♦ Composition is denoted by a filled diamond at the whole end.

■ Aggregation is a kind of "light” composition (semantics open, to be
accommodated to user needs)
♦ Aggregation is denoted by a empty diamond at the whole end.

BoxOffice belongs to exactly
one MovieTheater. Destroy
the MovieTheater and the
BoxOffice goes away!

The collection of Movies
is not so closely bound
to the MovieTheater.

19Prof. Dr. Knut Hinkelmann
MSc BIS

Dependencies and Constraints

■ A dependency is a relation between two classes in which a change in one may
force changes in the other. Dependencies are drawn as dotted lines.

■ A constraint is a condition that every implementation of the design must satisfy.
Constraints are written in curly braces { }.

Section can be part of a
CourseSchedule only if
it is not canceled.

Co_op depends on
Company. If you decide to
modify Company, you may
have to change Co_op too.

20Prof. Dr. Knut Hinkelmann
MSc BIS

Other Elements of Class Diagrams

There are other elements of class diagrams

■ Association Classes

■ Interfaces

■ Stereotypes

■ Templates

■ Comments

21Prof. Dr. Knut Hinkelmann
MSc BIS

UML Object

■ Instance of a class

■ Can be shown in a class and object diagram

■ Notation

22Prof. Dr. Knut Hinkelmann
MSc BIS

Object Diagram
■ Object diagrams show instances instead of classes. They are useful for

explaining small pieces with complicated relationships, especially recursive
relationships.

■ Each rectangle in the object diagram corresponds to a single instance.
■ Instance names are underlined in UML diagrams.
■ Class or instance names may be omitted from object diagrams as long as the

diagram meaning is still clear.

class diagram showing that
a university Department
can contain lots of other
Departments.

object diagram instantiating
the class diagram, replacing
it by a concrete example.

23Prof. Dr. Knut Hinkelmann
MSc BIS

Use Case Diagrams
■ Use case diagrams describe what a system does from the standpoint of an external

observer. The emphasis is on what a system does rather than how.
■ Main concepts:

♦ System: the system under modeling
♦ Actor: external “user” of the system: who or what initiates

the events involved in that task. Actors are simply
roles that people or objects play.

♦ Use case: execution scenario, observable by an actor:
♦ Communication: The connection between actor and use case is a

communication association (or communication for short).
■ Use Case diagrams are widely used in real-life projects, e.g. for

♦ Exposing requirements
♦ Communicate with clients
♦ Planning the project

■ Additional textual notes are often used/required

24Prof. Dr. Knut Hinkelmann
MSc BIS

Use Case Diagram Example

clinic

A system boundary rectangle separates the clinic system from the external actors.

25Prof. Dr. Knut Hinkelmann
MSc BIS

Use Case Diagram extended

26Prof. Dr. Knut Hinkelmann
MSc BIS

Use Case Example - Explanations

■ A use case generalization shows that one use case is simply a special kind of
another.
♦ Pay Bill is a parent use case and Bill Insurance is the child.

A child can be substituted for its parent whenever necessary. Generalization
appears as a line with a triangular arrow head toward the parent use case.

■ Include relationships factor use cases into additional ones. Includes are especially
helpful when the same use case can be factored out of two different use cases.
♦ Make Appointment and Request Medication include Check Patient Record

as a subtask.
In the diagram, include notation is a dotted line beginning at base use case ending
with an arrows pointing to the include use case. The dotted line is labeled
<<include>>.

■ An extend relationship indicates that one use case is a variation of another.
Extend notation is a dotted line, labeled <<extend>>, and with an arrow toward the
base case. The extension point, which determines when the extended case is
appropriate, is written inside the base case.

27Prof. Dr. Knut Hinkelmann
MSc BIS

Composite Structure Diagram

28Prof. Dr. Knut Hinkelmann
MSc BIS

Deployment Diagrams
■ Deployment diagrams show the physical configurations of software and hardware.

♦ Nodes represent either physical hardware (keyward «device») or software
(<<executionEnvironment>>)

♦ Nodes are connected by communication relations
♦ A component is a code module. Components are shown as rectangles with two tabs at the

upper left. Each component belongs on a node.

«device»
Bank Server

«device»
Real Estate Server

29Prof. Dr. Knut Hinkelmann
MSc BIS

Sequence Diagram
■ A sequence diagram is an interaction diagram that details how operations are carried out --

what messages are sent and when.
♦ Sequence diagrams are organized according to time. The time progresses as you go down

the page.
♦ The objects involved in the operation are listed from left to right according to when they take

part in the message sequence.

30Prof. Dr. Knut Hinkelmann
MSc BIS

Collaboration Diagram

■ Collaboration diagrams are also interaction
diagrams. They convey the same information as
sequence diagrams, but they focus on object roles
instead of the times that messages are sent.

■ In a sequence diagram, object roles are the
vertices and messages are the connecting links.

■ Each message in a collaboration diagram has a
sequence number. The top-level message is
numbered 1. Messages at the same level (sent
during the same call) have the same decimal prefix
but suffixes of 1, 2, etc. according to when they
occur

31Prof. Dr. Knut Hinkelmann
MSc BIS

State Chart Diagram
■ A statechart diagram shows the possible states of the object and the transitions

that cause a change in state.
♦ States are rounded rectangles.
♦ Transitions are arrows from one state to another.
♦ Events or conditions that trigger transitions are written beside the arrows.

32Prof. Dr. Knut Hinkelmann
MSc BIS

Activity Diagram

■ An activity diagram is essentially a fancy flowchart. Activity diagrams can
be divided into object swimlanes that determine which object is
responsible for which activity.

■ A single transition comes out of each activity, connecting it to the next
activity.

■ A transition may branch into two or more mutually exclusive transitions.
Guard expressions (inside []) label the transitions coming out of a
branch.

■ A branch and its subsequent merge marking the end of the branch appear
in the diagram as hollow diamonds.

■ A transition may fork into two or more parallel activities. The fork and the
subsequent join of the threads coming out of the fork appear in the
diagram as solid bars.

33Prof. Dr. Knut Hinkelmann
MSc BIS

Activity Diagram - Example

34Prof. Dr. Knut Hinkelmann
MSc BIS

OCL – Object Constraint Language

■ OCL is a constraint language integrated in the UML standard
■ OCL aims to fill the gap between mathematical rigor and business modeling

♦ formal language with precise semantics for expression but
♦ easy to read and write

■ It is recommended in UML for:
♦ Constraints: pre and post conditions, invariants
♦ Boolean expressions: guards, query body specification
♦ Defining initial and derived values of features
and
♦ to specify queries on the UML model, which are completely programming

language independent.
■ OCL is a pure specification/modeling language; therefore, an OCL expression is

guaranteed to be without side effects – it simply returns a value
■ OCL is not a programming language; therefore, it is not possible to write program

logic or flow control in OCL. You cannot invoke processes or activate non-query
operations within OCL.

35Prof. Dr. Knut Hinkelmann
MSc BIS

Where to use OCL

■ OCL can be used for a number of different purposes:
♦ As a query language
♦ To specify invariants on classes and types in the class model
♦ To specify type invariant for Stereotypes
♦ To describe pre- and post conditions on Operations and

Methods
♦ To describe Guards
♦ To specify target (sets) for messages and actions
♦ To specify constraints on operations
♦ To specify derivation rules for attributes for any expression over

a UML model.

36Prof. Dr. Knut Hinkelmann
MSc BIS

Example Diagram

37Prof. Dr. Knut Hinkelmann
MSc BIS

Usage of OCL in UML models

■ Context
♦ Each OCL expression is written in the context of an instance of a

specific type.
♦ In an OCL expression, the reserved word self is used to refer to the

contextual instance
♦ The context of an OCL expression within a UML model can be

specified through a so-called context declaration at the beginning of an
OCL expression

■ Invariant
♦ The OCL expression can be part of an Invariant, a condition that must

be true for all instances at any time
context Company inv:
self.numberOfEmployees > 50

38Prof. Dr. Knut Hinkelmann
MSc BIS

Usage of OCL in UML models

■ Preconditions and Postconditions
♦ The stereotype of constraint is shown by putting the labels ‘pre:’

and ‘post:’ before the actual Preconditions and Postconditions.
For example:

♦ The OCL expression can be part of an Invariant, a condition that
must be true for all instances at any time
context Typename::operationName(param1 : Type1, ...): ReturnType
pre : param1 > ...
post: result = ...

■ In an example diagram, we can write:
context Person::income(d : Date) : Integer
post: result = 5000

39Prof. Dr. Knut Hinkelmann
MSc BIS

Usage of OCL in UML models

■ Operation Body Expression
♦ An OCL expression may be used to indicate the result of an operation.

This can be done using the following syntax:
context Typename::operationName(param1 : Type1, ...): ReturnType
body: ‐‐ some expression.

♦ The expression must conform to the result type of the operation. Like in
the pre- and postconditions, the parameters may be used in the
expression.

♦ Pre-, and postconditions, and body expressions may be mixed together
after one operation context.

■ Example:
context Person::getCurrentSpouse() : Person
pre: self.isMarried = true
body: self.mariages‐>select(m | m.ended = false).spouse

40Prof. Dr. Knut Hinkelmann
MSc BIS

