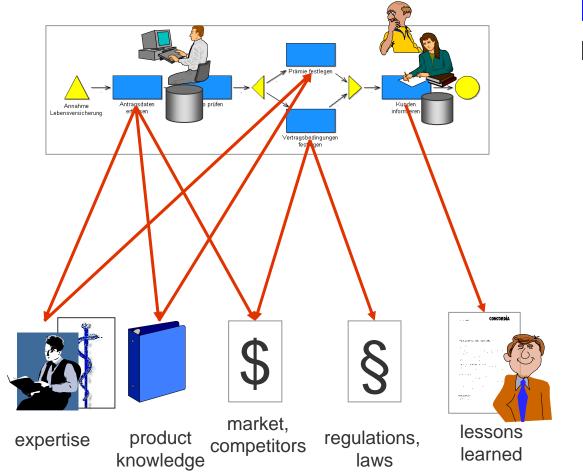
N University of Applied Sciences Northwestern Switzerland School of Business


Knowlege in Processes -Introduction to Knowledge-Based Systems

MSc Business Information Systems

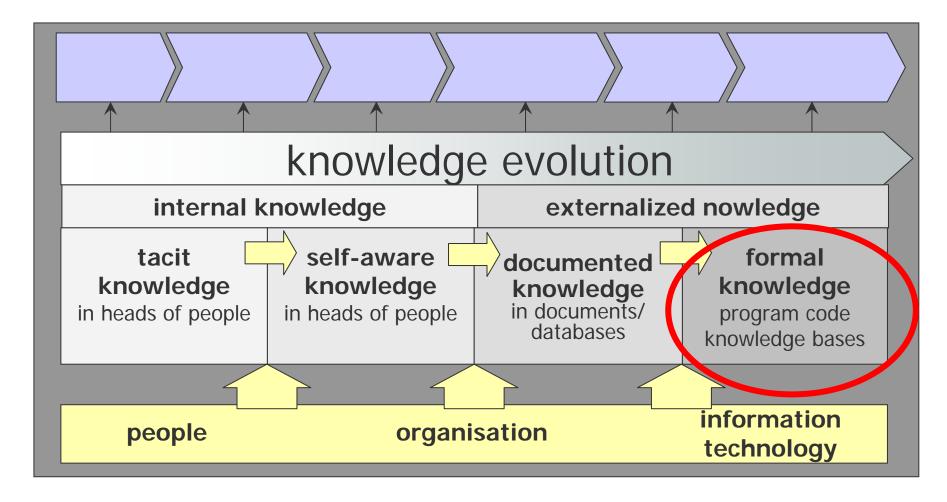
 $\mathbf{n}|_{\mathcal{U}}$

Starting Point: Knowledge and Processes

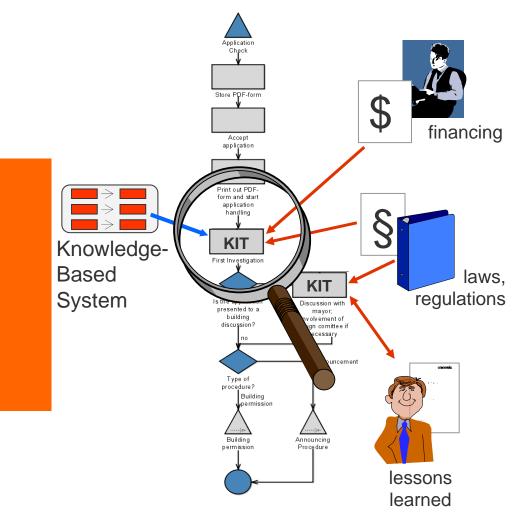
process knowledge

knowledge *about* processes:

- workflow
- participants
- ressources


functional knowledge

knowledge in processes:


- skills
- domain knowledge
- strategies

 $\mathbf{n}|\boldsymbol{w}$

Knowledge in Enterprises

Knowledge Support of Processes

- Structured processes can contain knowledge work
- Support of Knowledge-Intensive Tasks (KIT) by ...
 - ... Identifying knowledgable people
 - Assign the task to employee with appropriate skills
 - ... Intelligent Information Provision
 - Find documentation
 - ... Knowledge-Based System (expert system) for
 - Decision making
 - Planning
 - Diagnosis
 - Problem solving

Application of Knowledge

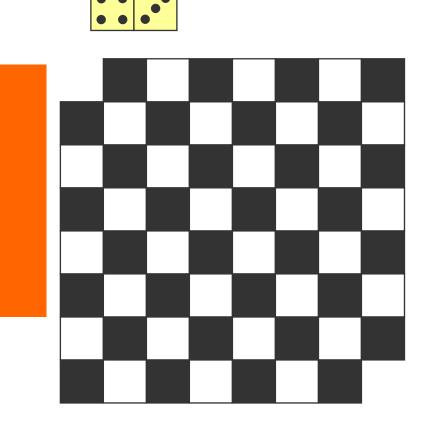
Examples from the Car Rental Company

Decision-Making

n

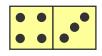
- Choose between different offers for new cars
- Diagnosis/Problem Solving
 - Find the failure if the engine of the car does not start
- Configuration
 - Select equipment for new cars
- Planning
 - Scheduling of cars so that they are at the branch
- Information Retrieval
 - Find all documents with regulations about international drivers licences

Expert Systems

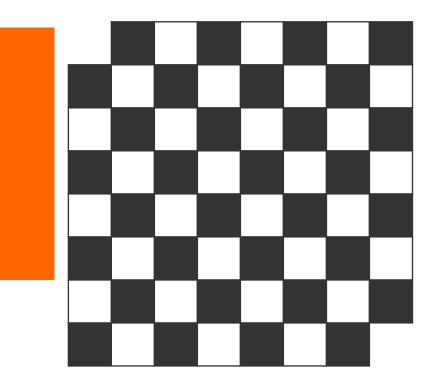

n

- An Expert System is an intelligent computer program that uses knowledge and inference procedures to solve problem that are difficult enough to require human expertise for their solutions." (Feigenbaum 1982)
- The term "knowledge-based systems" is often used synonym for "expert systems". It makes clear that the system has an explicit knowledge base.

 $\mathbf{n}|\mathcal{U}$


The Role of Knowledge in Problem Solving: Example

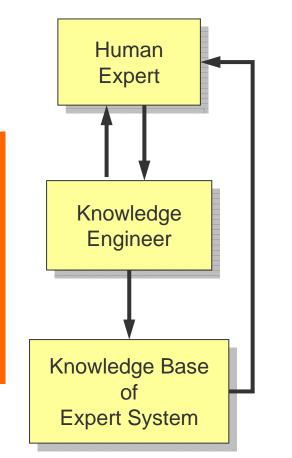
Placing a domino on a chess board



- Given a chess board where two opposite corners are missing
- A domino covers two adjacent field
- Is it possible to cover all fields of the board with dominos?

Possible Solution Approaches

n



- Solution 1: Exhaustive Search Check all possibilities to put dominos on the board. Stop when all fields are covered or all possibilities failed.
- Solution 2: Heuristics

Prune the search: Try only promising paths which seem to lead to a (good) solution.

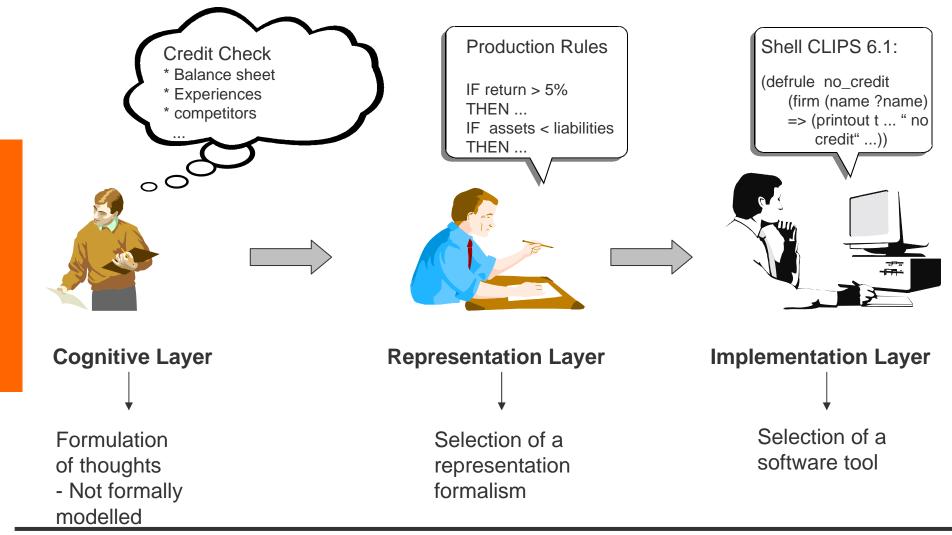
Solution 3: Knowledge

Knowledge Engineering

n

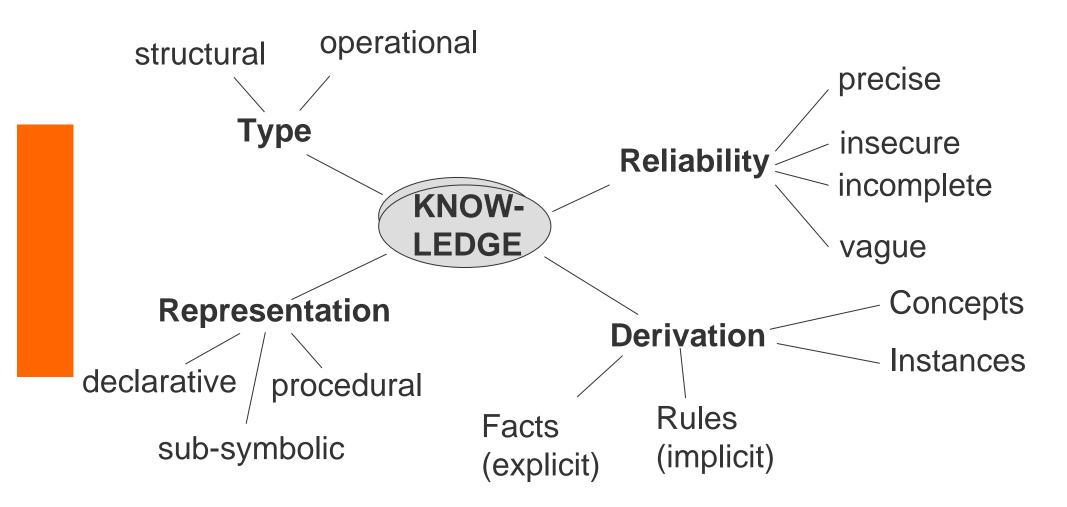
- Knowledge Engineering is the process of
 - building and
 - maintaining
 knowledge-based systems or intelligent agents
- "Knowledge Engineering is an engineering discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring a high level of human expertise."¹)
- Sources of knowledge
 - Human experts
 - Documentation

1) Feigenbaum, E., and P. McCorduck. (1983). The Fifth Generation. Reading, MA: Addison-Wesley



Knowledge can exist on different layers:

- Cognitive layer: colloquial statement of thoughts; problems are getting modelled, but still not formalised.
- Representation layer: Formalisation of thoughts in a representation formalism (e.g. production rules, logic, ontologies)
- Implementation layer: Formalisation has progressed so much, that the reasoning is possible on a computer (e.g. realisation of a Prolog programme).

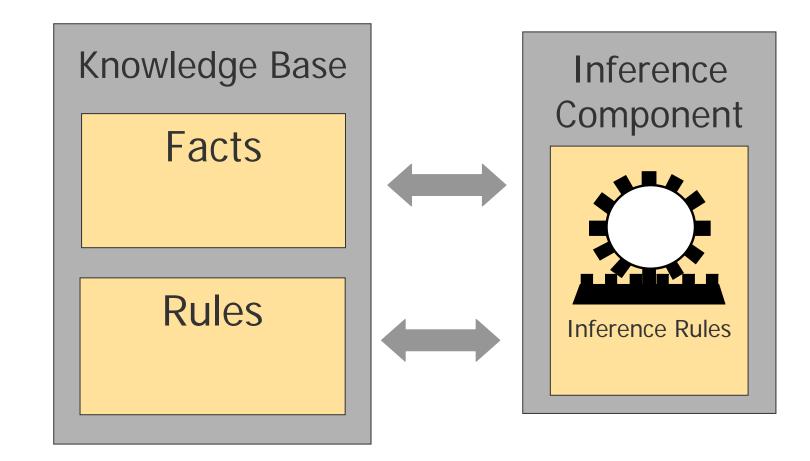

n v

Layers of Knowledge-Based Systems

Holger Wache / Knut Hinkelmann

Classification of Knowledge

Reliability of Knowledge


Exact knowledge:

n

- "It is raining."
- Uncertain knowledge:
 - "I believe it will not rain tomorrow."
- Incomplete knowledge (knowledge not complete, but strongly delimitated):
 - "The temperature ist between 10 and 15 degree Celsius"
- Vague knowledge (interpretation-dependent knowledge):
 - "The weather is good."

 $\mathbf{n} w$

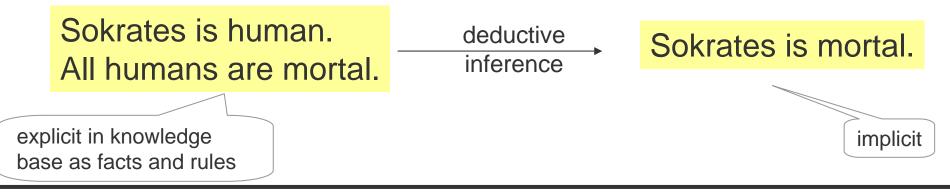
Knowledge-Based Systems

Facts and Rules

- Facts: statements about reality (explicit knowledge)
- Rules: General proposition about relations or procedure that are valid under specific conditions (e.g. in an "if ... then"form")

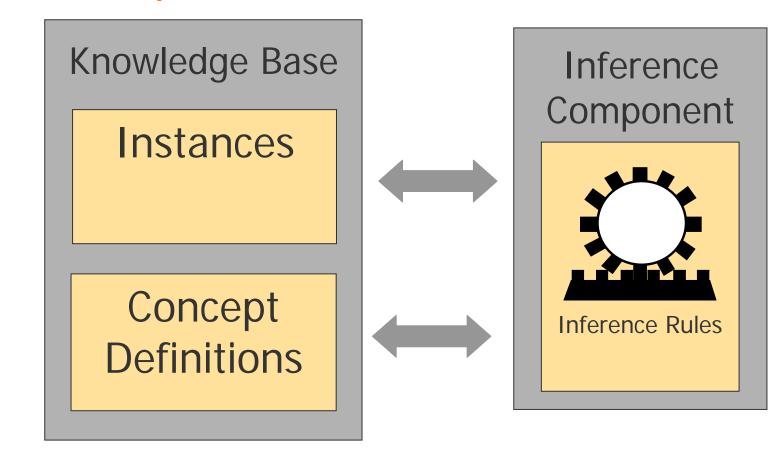
Examples:

■ Fact:


n

- Socrates is human
- Rule:
 - All humans are mortal

Derivation


n

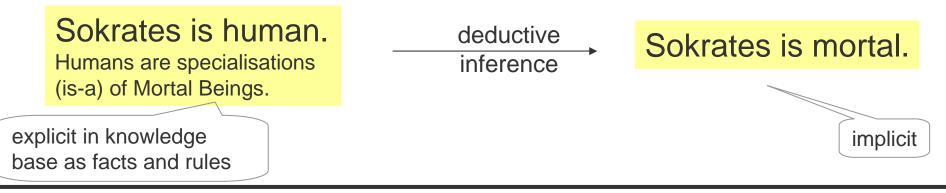
- Explicit knowledge:
 - knowledge which is filled away in the knowledge base
- Implicit knowledge:
 - not explicitly stated in the knowledge base
 - is determined from facts by application of rules
- Derivation = Inference = Reasoning
 - New knowledge is generated from existing one: Making implicit knowledge explicit

 $\mathbf{n}|w$

Knowledge-Based Systems (Concepts and Instances)

Types of Knowledge

- Instances: statements about reality
- Concepts: General proposition about relations that are valid under specific conditions
- Examples:


n

- Instance:
 - Socrates is human
- Concept:
 - Humans are specialisations (is-a) of Mortal Beings

Derivation

n

- Explicit knowledge:
 - knowledge which is filled away in the knowledge base
- Implicit knowledge:
 - not explicitly stated in the knowledge base
 - is determined from facts by application of rules
- Derivation = Inference = Reasoning
 - New knowledge is generated from existing one: Making implicit knowledge explicit

Holger Wache / Knut Hinkelmann

Structural vs. Operational Rules

- Rules can represent structural and operational knowledge (in the sense of SBVR)
 - Structural: True by definition
 - It is necessary that ...
 - It is impossible that ...
 - It is possible that ... only if ...
 - Example: It is necessary that an Employee is a person
 - Operational: govern what the business does
 - It is obligatory that ...
 - It is prohibited that
 - It is permitted that ... if ...
 - Example: It is obligatory that an Employee who is a manager gets a bonus

Example of a Knowledge Base

- Employee(john_smith) Facts
 - Employee(mary baker)
 - Manager(mary_baker)
- Rules $Employee(X) \rightarrow Person(X)$
 - Employee(X) AND Manager(X) \rightarrow GetBonus(X)
- The facts represent explicit knowledge
- The rules can be used to derive knowledge that is implicit in the facts and rules:
 - All persons that get a bonus ٠
- The second rule represents operational knowledge because bonus is not given by definition (remember SBVR: operative rules, enforcement)
- The facts and rules are declarative: simply logic

Predicate Logic: $\forall x \text{ Employee}(x) \rightarrow \text{Person}(x)$ $\forall x \text{ Employee}(x) \land \text{Manager}(x) \rightarrow \text{Bonus}(x)$

Example of a Knowledge Base

S	Father(peter) isFatherOf(peter,mary)
Facts	isFatherOf(peter,john) Mother(mary) isMotherOf(mary,mark) isMotherOf(jane,mary)
Rules	isFatherOf(X,Y) AND isFatherOf(Y,Z) → isGrandfatherOf(X,Z) isFatherOf(X,Y) AND isMotherOf(Y,Z) → isGrandfatherOf(X,Z) isMotherOf(X,Y) AND isFatherOf(Y,Z) → isGrandmotherOf(X,Z) isMotherOf(X,Y) AND isMotherOf(Y,Z) → isGrandmotherOf(X,Z) isFatherOf(X,Y) AND isFatherOf(X,Z) → isSiblingOf(Y,Z) isMotherOf(X,Y) AND isMotherOf(X,Z) → isSiblingOf(Y,Z)

The rules can be used to derive information that is implicit in the facts and rules:

- Derive all grandparent and sibling relationships (forward chaining)
- Answer questions about relationships (backward chaining)

These rules are structural (in the sense of SBVR): true by definition

Alternative Representation of a Knowledge Base

Concept Definitions Instances

 $\mathbf{n}|_{\mathcal{U}}$

	Father(peter)	isFatherOf(peter,mary)
	Mother(mary)	<pre>isFatherOf(peter,john) isMotherOf(mary,mark) isMotherOf(jane,mary)</pre>
	Parent \subset Father OR M	
SUC	$ Grandfather \subseteq \exists isFat $	
Jetinitions	Grandfather $\subseteq \exists isFat$	herOf.(∃isMotherOf)
etil	Grandmother $\subseteq \exists is M$	otherOf.(∃isFatherOf)
	$\mathbf{Grandmother} \subseteq \exists is M$	otherOf.(∃isMotherOf)

Declarative vs. Procedural Knowledge

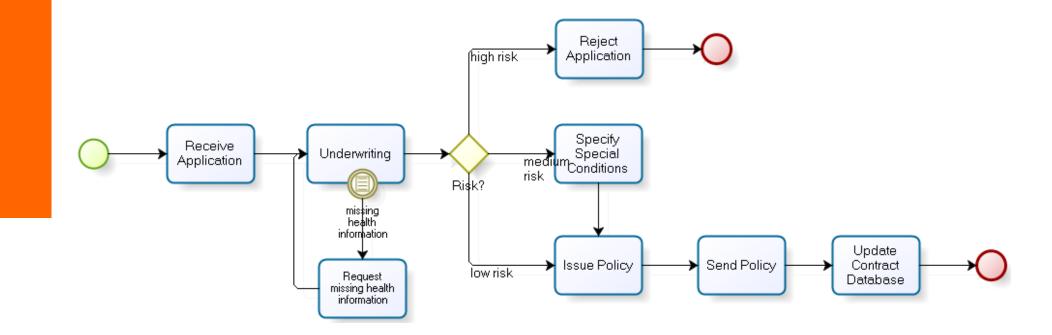
- Declarative knowledge: The semantics of the knowledge is independent of an inference engine
- Procedural knowledge: The representation of knowledge has non-logic elements, e.g. representing actions, updating knowledge

if a car reaches a traffic light *and* the traffic light has switched to red *then* hold at the stop line

if account balance is X *and* deposit is Y *then* account balance = X + Y *if* X is employee of company Y *and* X quits jog *then* delete (X is employee of company Y)

Paradigms of Knowledge Processing

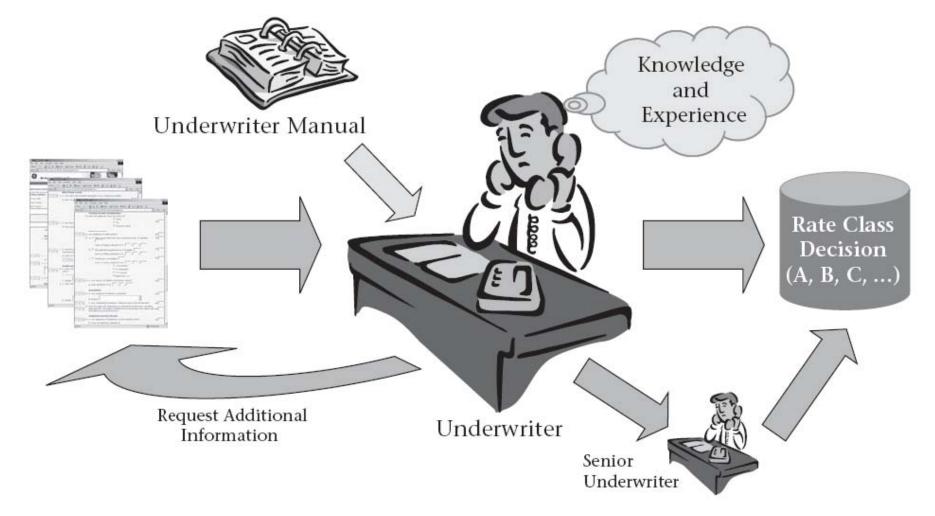
Symbolic Systems:


n

- Logic Systems:
 - Representations: logical formulas
 - Derivation of knowledge: Inference (Deduction)
- Non-Logic Systems:
 - Representations: condition-action rules
 - Derivation of knowledge: Inference
- Fuzzy Systems:
 - Representation: linguistic formulated knowledge
 - Derivation of knowledge: Approximate conclusion
- Subsymbolic Systems:
 - Neural Networks
 - Representation: units, weights between units
 - Derivation of knowledge: Connotation

n v

Example: Application for Health Insurance


Medical Underwriting for Life Insurance is a knowledgeintensive tasks in a structured process of dealing with applications for health insurance

 $\mathbf{n}|_{\mathcal{W}}$

Example: Underwriting of Insurance Applications

Manual Underwriting Process

Manual Underwriting Process

- The LTC underwriting process begins when a paper application (APP)
- The APP is scanned into an electronic data warehouse.
- Underwriters located throughout the country view these scanned documents online, and then rate the risk of insuring each person.
- If the underwriter has any concerns, he can request additional information from the applicant via a Phone Health Interview (PHI) and/or a Face-to-Face (F2F) interview, resulting in the submission of additional paper forms
- An underwriter can also request a copy of the applicant's medical history from their primary physician (Attending Physician Summary APS)
- An underwriter can make a decision at any point they feel they have sufficient information.
- If they have any questions or concerns, they can refer cases to a senior underwriter.

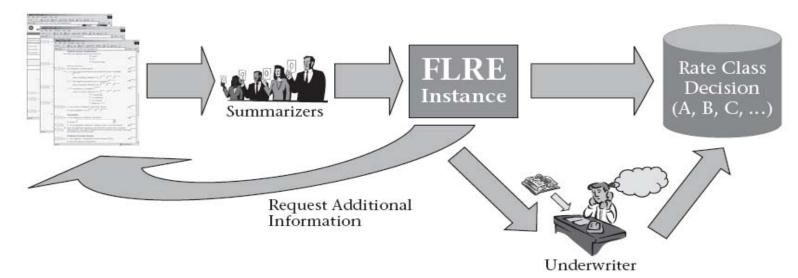
Decision Making in Underwriting

- Underwriters make decisions following guidelines specified in an underwriter manual.
- They also rely upon extensive medical knowledge and personal experience when underwriting cases.
- Problem:

n

The reliance upon their own experience and judgment causes inconsistency across the underwriters, resulting in inaccurate rate classifications.

Automated Underwriting


- Supporting Underwriting has been an application for knowledge-based systems for many years
- In the following we look at an example to automate underwriting of Long Term Care and Life Insurance applications
- The system has been in production since December 2002
- In 2005 it completely automated 19.2% of the LTC applications

Source:

n

Aggour, K. S., Bonissone, P. P., Cheetham, W. E., & Messmer, R. P. (2006). Automating the Underwriting of Insurance Applications. *AI Magazine*, *27*(3), 36-50

Automated Underwriting Process

- Medical Summarizers view applications and fill web-based forms
- FLRE (Fuzzy Logic Rule Engine) = Digital Underwriter
 - Codification of unterwriter rules
- Three decisions done by the FLRE
 - Rate class of the application
 - Whether or not to order additional information
 - Whether or not to send the case to a human underwriter for review

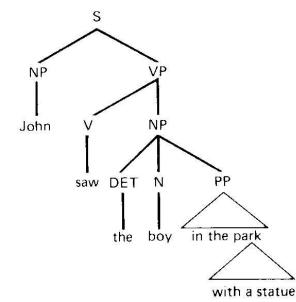
Challenges for Automating Unterwriting

- Use of personal knowledge and experience to make decisions automatically
 - Knowledge elicitation
- Input to the process (application, attending physician summary APP, summaries) contains free text
 - Natural Language Understanding

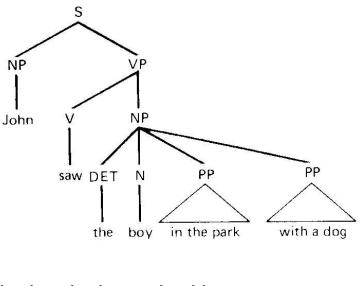
Excursion: Natural Language Understanding

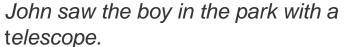
- Problems with natural Language Understanding:
 - There can be multiple expressions for the same statement
 - Word level: Synonyms
 - Sentence level: different formulations
 - A sentence can have multiple

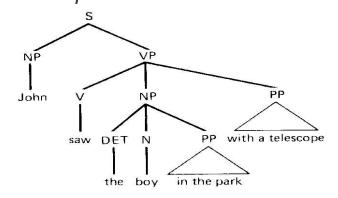
"Time flies like an eagle" "John saw the boy in the park with a telescope" "John saw the boy in the park with a statue"


- Understanding natural language requires knowlege about
 - language (Syntax grammar rules)
 - domain (Semantics knowledge about the meaning of terms)
 - conventions about language use (Pragmatics)

" Do you know the time?" \rightarrow request to tell the time


Excursion: Example

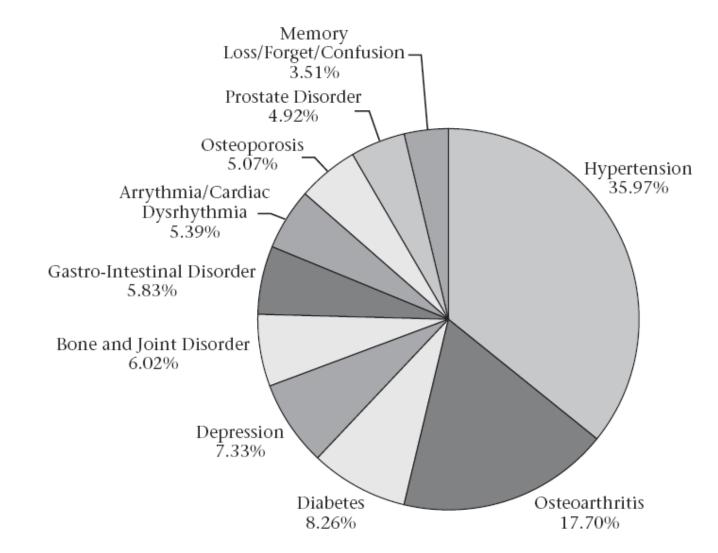

Same sentence structure but different interpretations:


John saw the boy in the park with a statue.

John saw the boy in the park with a dog.

Natural Language Processing

- Objective: determine if the text entered by the summarizers is benign
 - If text entries could be interpreted and classified as benign, the level of automation could be increased.
- A grammar was constructed for benign text and lists were created for:
 - Noise words and in-phrase characters (Noise)
 - Phrase separators (Separator)
 - Benign words or synonyms (Benign)
 - Dates in various formats (Date)
- Statistical Approach: Learn benign words and phrases
- The current grammar for benign text is:
 - BenignText:
 - BenignPhrase [Separator [BenignPhrase]]*
 - BenignPhrase:
 - [Noise]* [Benign [Noise]* [Date [Noise]*]


 $\mathbf{n}|_{\mathcal{U}}$

Part of an APP Summarization Form

Yes	No						
OYC	N 1	. Are you co	overed by Medicaid (no	t Me	dicare)?		
OYC	N 2.	assistance	or supervision by anot out of bed or chair; Bat	ther	Oxygen; Respirator; or person in performing a ; Dressing; Eating;Toil	any c	of the following:
OYC	`N ^{З.}		had, do you currently h of the following:	ave,	or have you ever beer	n me	dically diagnosed as
			Acquired Immune Deficiency Syndrome (AIDS)		Emphysema/COPD in combination with any of the following: current smoking, Congestive Heart Failure (CHF), Asthma, or Chronic Bronchitis		Positive HIV test
			AIDS Related Complex (ARC)		Frequent or persistent Forgetfulness		Senility
			ALS (Lou Gehrig's Disease)		Memory Loss		Stroke
			Alzheimer's Disease		Metastatic Cancer (Spread from original site/location)		Transient Ischemic Attack (TIA) within the past 5 years
			Congestive Heart Failure (CHF) in combination with any of the following: Heart Attack or Angina;		Multiple Sclerosis (MS)		TIA in combination with Diabetes or Heart Surgery

 $\mathbf{n}|w$

Relative Frequency of Impairments

Underwriter Assist Screen

Policy Number			PI/SP:	SP				
Name :			Age :	47				
Application Type:	Preferred		Employmen Status:	nt Does Not Work	Smoking Status:	Non-Smoker	R	ecommendations
App Height:	5 ft. 10 ir	٦.	Weight:	175 lb.				
PHI Height:	NA		Weight:	NA	DWR:	09	l n	nade by different
MRR Height:	NA		Weight:	NA	Date:	03/22/2004		engines
Engine Results (Summary							one line per FLRE instance)
Date/Time		Engine	Recomr	nendation	Routing	Pement		/
03/22/2004 12	:20:54	APP		REFERRED	O uw	NA		
0		PHI		NA	NA	NA		
0		HTN		NA	NA	NA		
0		DM		NA	NA	NA		
03/23/2004 05	:23:05	<u>0A</u>	Os	TANDARD	O uw	NA		
0		OP		NA	NA	NA		
0		GENERAL		NA	NA	NA		
			-	TANDARD	UW			

Underwriter Assist Screen

Details about rules that caused the rate class recommendation

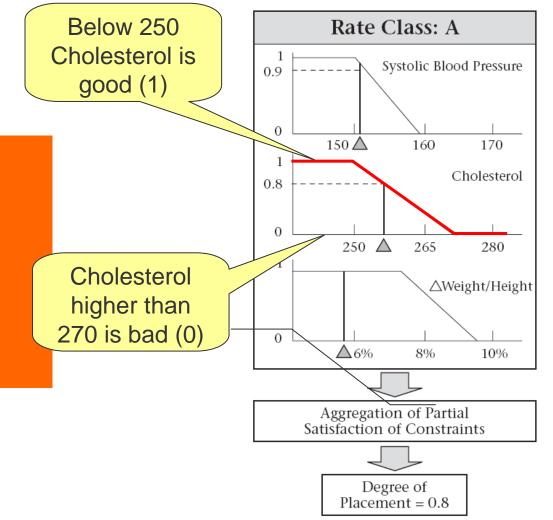
Source

pg 2

pg 10

pg 1

APP	recomm		
Underwriting Reason	Value	English Rule	Guideline
Prescription_1	NA	Applicant takes a prescription	PDF
Speciality_Not_Stated	NA	Speciality not stated	PDF
Other_Dr_Reason_Visit_1	NA	Unknown reason for a doctor's visit	PDF


Osteoarthritis

 $\mathbf{n}|_{\mathcal{W}}$

Rate Class Reason	Value	English Rule	Guideline	Source
Prescription_Use	NA	Applicant takes a non-narcotic prescription for OA	PDF	pg 7
Joint_Replacement_Discussed	NA	Doctor discussed joint replacement surgery with applicant	<u>PDF</u>	<u>pg 7</u>
COX2_Use	NA	Applicant takes a COX2 inhibitor	PDF	pg 8

n|1

Vague Knowledge: Fuzzy Logic Rule for Classification

- Underwriting relies on vague knowledge
 - when is cholesterol good or bad
 - what is a high blood pressure
- Fuzzy logic rules are used to encode underwriting standards.
- Fuzzy logic is a superset of conventional Boolean logic for vague knowledge:
 - Instead of have only two values (true/false) it can express intermediate truth values