Business Process Modelling with BPMN

Knut Hinkelmann
BPMN – Business Process Model and Notation

- BPMN is a graphical modeling notation for business processes that is independent of a specific implementation environment.

- BPMN was officially adopted as an OMG specification in 2006, updated in 2008 and now available in version 2.0 (http://www.omg.org/spec/BPMN/2.0/)

- BPMN provides a standardized bridge for the gap between the *business process design* and *process implementation*.
Elements of BPMN

Elements of BPMN can be divided into 4 categories:

- **Flow Objects**
 - Events
 - Activities
 - Gateways

- **Connectors**
 - Sequence Flow
 - Message Flow
 - Association

- **Artefacts**
 - Data Object
 - Text Annotation

- **Swimlanes**
 - Pool
 - Lanes (within a Pool)
Activities

- An activity is work that is performed within a business process.
- Typically an activity is one step of a larger business process.
- Activities are rounded rectangles (some tools use colors)
- There are two types of activities:
 - A **Task** is a unit of work, the job to be performed.
 - When marked with a [+], it indicates a **Sub-Process**, an activity that can be refined.
Sub-Processes

- A Sub-Process is a compound activity that is included within a Process.
 - A process can be broken down into a finer level of detail through a set of sub-activities.

- Two kinds of representation
 - Collapsed: the details of the Sub-Process are not visible in the Diagram. A “plus” sign in the lower-center of the shape indicates that the activity is a Sub-Process and has a lower-level of detail.
 - Expanded: the details (a Process) are visible within its boundary.
Task Types

- Send Task
- Receive Task
- User Task
- Manual Task
- Business Rule Task
- Service Task
- Script Task

- Types specify the nature of the action to be performed.
- They can be identified by a symbol inside the object.
Activity Markers

Markers indicate execution behavior of activities / subprocesses:

- Sub-Process Marker
- Loop Marker
- Parallel MI Marker
- Sequential MI Marker
- Ad Hoc Marker
- Compensation Marker
Sequence Flow

- A Sequence Flow is used to show the order that activities will be performed in a Process.
- The source and target must be one of the following objects:
 - Events
 - Activities
 - Gateways
- In a sequence of activities, the subsequent activity is performed after the previous activities is finished.

(Bridgeland & Zahavi 2009, p. 106)
Events are states that affect the flow of the process
- they start, interrupt and finish the flow
- they can trigger an activity or are its result

Events are represented as circles. The type of boundary determines the type of Event
- Start Event
- Intermediate Event
- End-Event

Events can have descriptions, just as tasks.
Example: A simple End-to-End Process

- A process begins with a start event and ends with an end event
 - **Diner Arrives** is the start event
 - **Diner Seated** is the end event

- An intermediate event happens after the process starts and before it ends
 - **Party Arrived** is a catching intermediate event that models a delay: When the first diner of a party arrives the host checks the reservations but does not seat the diner until the rest of the party arrives.

- Note that the difference in the naming of events and activities:
 - Activity names are typically imperative sentences, they sound like command. The verb is at the beginning of the name.
 - Event names are typically declarative sentences, describing a state or something that happens

(Bridgeland & Zahavi 2009, p. 108f)
Event-Types

<table>
<thead>
<tr>
<th>Event Type</th>
<th>None</th>
<th>Message</th>
<th>Timer</th>
<th>Conditional</th>
<th>Signal</th>
<th>Escalation</th>
<th>Error</th>
<th>Compensation</th>
<th>Parallel</th>
<th>Multiple</th>
<th>Link</th>
<th>Cancel</th>
<th>Terminate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Events</td>
<td></td>
</tr>
<tr>
<td>Top-Level</td>
<td></td>
</tr>
<tr>
<td>Event Sub-Process</td>
<td></td>
</tr>
<tr>
<td>Interrupting</td>
<td></td>
</tr>
<tr>
<td>Event Sub-Process</td>
<td></td>
</tr>
<tr>
<td>Non-Interrupting</td>
<td></td>
</tr>
<tr>
<td>Intermediate Events</td>
<td></td>
</tr>
<tr>
<td>Catching</td>
<td></td>
</tr>
<tr>
<td>Throwing</td>
<td></td>
</tr>
<tr>
<td>Boundary</td>
<td></td>
</tr>
<tr>
<td>Interrupting</td>
<td></td>
</tr>
<tr>
<td>Non-Interrupting</td>
<td></td>
</tr>
<tr>
<td>End Events</td>
<td></td>
</tr>
</tbody>
</table>

Business Process Modeling, BPMN
Event Types

- **None**: Untyped events, indicate start point, state changes or final states.
- **Message**: Receiving and sending messages.
- **Timer**: Cyclic timer events, points in time, time spans or timeouts.
- **Conditional**: Reacting to changed business conditions or integrating business rules.
- **Signal**: Signalling across different processes. A signal thrown can be caught multiple times.
- **Escalation**: Escalating to an higher level of responsibility.
- **Error**: Catching or throwing named errors.
- **Compensation**: Handling or triggering compensation.
- **Multiple**: Catching one out of a set of events. Throwing all events defined
- **Parallel Multiple**: Catching all out of a set of parallel events.
- **Link**: Off-page connectors. Two corresponding link events equal a sequence flow.
- **Cancel**: Reacting to cancelled transactions or triggering cancellation
- **Terminate**: Triggering the immediate termination of a process.
Properties of Events

- **Start-Events:**
 - Top-level
 - Event Sub-Process Interrupting
 - Event Sub-Process Non-Interrupting

- **End-Event**

- **Intermediate Events**

 Between Activities:
 - Throwing
 - Catching

 On the boundary of activities
 - Boundary Interrupting
 - Boundary Non-Interrupting
Intermediate Events

- Events that are placed within the process flow represent things that happen during the normal operations of the process. They can represent …
 …a «trigger» that initiates an activity – catching
 …the result of an activity – throwing

- Events that are attached to the boundary of an activity can occur during the activity. They can …
 …interrupt the activity (solid lines)
 …open an additional path without interrupting (modelled with dashed line)
Catching and Throwing Events

- **A throwing** intermediate event, with the black icon inside, means the process generates the trigger signal.

- **A catching** intermediate event, with the wide icon inside, means the process waits for the trigger signal.
 - A catching event interrupts a process and waits for the trigger signal to arrive.
 - When the trigger signal arrives, the process resumes on the sequence flow out of the event.
Swimlanes – Pools and Lanes

- A pool is a container for a business process or a participant in a collaboration.
- A lane is an optional subdivision of a process level. They are typically used to associate process activities with particular actors.
 - Each participant that performs activities in a business process has a lane.
 - A lane can represent a role, an organizational unit, or a system.

(Bridgeland & Zahavi 2009, p. 110f)
Gateways

- **Gateways** model sequence flow alternatives, i.e. they represent points of control.
- They split and merge the flow of a Process.
- All types of Gateways are diamonds.
- The underlying idea is that Gateways are unnecessary if the Sequence Flow does not require controlling.
Gateways – Splitting and Merging

Exclusive Gateway: When splitting, it routes the sequence flow to exactly one of the outgoing branches. When merging, it awaits one incoming branch to complete before triggering the outgoing flow.

Event-based Gateway: Sequence flow is routed to the subsequent event/task which happens first.

Parallel Gateway (AND): When used to split the sequence flow, all outgoing branches are activated simultaneously. When merging parallel branches it waits for all incoming branches to complete before triggering the outgoing flow.

Inclusive Gateway (OR): When splitting, one or more branches are activated. All active incoming branches must complete before merging.
Exclusive Gateways

- For exclusive Gateways exactly one of the following sequence flows is selected

- The name of the gateway is a question with the alternative answers to the questions as labels on the outgoing sequence flows
Exclusive Gateways based on Data

- The Gateway (Decision) creates alternative paths based on defined conditions.
- Exclusive Gateways based on Data are the most commonly used Gateways.
- They can be shown with or without an internal „X“ marker. Without is the most common use.
Exclusive Gateways based on Events

- Alternatives in this Decision are based on events that occur at the point in the process rather than conditions.
- The Multiple Intermediate Event is used to identify this Gateway.
- The Events that follow the Gateway Diamond determine the chosen path:
 - The first Event triggered wins.
A parallel gateway

- starts parallel work, i.e. two (or more) sequence flows that then progress at the same time
- parallel flows are joined back together by another parallel gateway

(Bridgeland & Zahavi 2009, p. 114f)
Inclusive Gateway

- An inclusive gateway allows either of the outgoing sequence flow to be taken or several in parallel.
- They usually are followed by a corresponding merging Inclusive Gateway.
- Example: The following process shows a process where the guests do not have both appetizers and entrees but can have only one of them.

(Bridgeland & Zahavi 2009, p. 114f)
Default Sequence Flow and Conditional Sequence Flow

- One of the outgoing sequence flows from a gateway can be marked as default – the one that is taken if there is no reason to take another sequence flow.

- The default is modeled with a short line crossing the sequence flow.

- The same can be modeled without a gateway using a conditional sequence flow.

- A conditional sequence flow is a sequence flow that includes a condition.

Example: Identical process with a gateway and with conditional sequence flow

(Bridgeland & Zahavi 2009, p. 116)
Artifacts

- Artifacts provide the capability to show information beyond the basic flow-chart structure of the Process
- There are currently three standard Artifacts in BPMN:
 - Data Objects
 - Groups
 - Annotations
- A modeler or tool can extend BPMN by defining new Artifacts
Text Annotations and Data Objects

- Text Annotations are a mechanism for a modeler to provide additional information about a Process.
- Text Annotations can be connected to a specific object on the Diagram with an Association.
- Data Objects can be used to define inputs and outputs of activities.
- Data Objects can be given a “state” that shows how a document may be changed or updated within the Process.
Data Elements in BPMN

- BPMN 2.0 contains new graphical elements to represent data
 - Data Associations: connecting Data Objects to Activities
 - Data Inputs and Outputs can be visualized
 - Data Stores represent repositories or databases
 - Collections, marked by [+] , represent groups of Data Objects
Swimlanes partition and organise activities

There are two main types of swimlanes: Pool and Lane

- Pools represent Participants in an interactive (B2B) Business Process Diagram
- Lanes represent sub-partitions for the objects within a Pool – they represent participants of a process

(Bridgeland & Zahavi 2009, p. 123)
A Pool may be a „black box“ or may contain a Process

Interaction between Pools is handled through **Message Flow**

A Message Flow can connect to the boundary of the Pool or to an object within the Pool

Message Flows are not allowed between objects within a single Pool

Sequence Flow must not cross the boundary of a Pool (i.e. a Process is fully contained within a Pool)
Data Transfer with Message Flow and Associations

Message Flow between pools:

Insurance

Request medical certificate

Physician

Write certificate

Data transfer inside a pool MUST NOT be modeled with Message Flow but with Associations:
Groups

- The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally.

- A Group can stretch across the boundaries of a Pool, often to identify Activities that exist within a distributed business-to-business transaction.